World Journal of Emergency Medicine ›› 2025, Vol. 16 ›› Issue (3): 206-211.doi: 10.5847/wjem.j.1920-8642.2025.050
• Review Article • Previous Articles Next Articles
Rui Shao, Chenchen Hang, Xingsheng Wang, Luying Zhang, Fei Shao, Ziren Tang()
Received:
2024-11-12
Accepted:
2025-03-16
Online:
2025-05-19
Published:
2025-05-01
Contact:
Ziren Tang, Email: Rui Shao, Chenchen Hang, Xingsheng Wang, Luying Zhang, Fei Shao, Ziren Tang. The “SOOTEST-ICU” bundle for optimizing cerebral hypoxia and reperfusion to minimize brain injury after resuscitation from cardiac arrest[J]. World Journal of Emergency Medicine, 2025, 16(3): 206-211.
Add to citation manager EndNote|Ris|BibTeX
URL: http://wjem.com.cn/EN/10.5847/wjem.j.1920-8642.2025.050
Figure 1.
Oxygen and substrate cascades in the brain. CBF: cerebral blood flow; MAP: mean arterial pressure; ICP: intracranial pressure; PvO2: peak oxygen consumption; PbtO2: brain tissue oxygen pressure; CPP: cerebral perfusion pressure; LPR: lactate/pyruvate ratio; SjvO2: jugular venous bulb oximetry; ATP: adenosine triphosphate; TCA: tricarboxylic acid; O2: oxygen.
1 | Geocadin RG, Callaway CW, Fink EL, Golan E, Greer DM, Ko NU, et al. Standards for studies of neurological prognostication in comatose survivors of cardiac arrest: a scientific statement from the American Heart Association. Circulation. 2019; 140(9): e517-e542. |
2 |
Sandroni C, Cronberg T, Sekhon M. Brain injury after cardiac arrest: pathophysiology, treatment, and prognosis. Intensive Care Med. 2021; 47(12): 1393-414.
doi: 10.1007/s00134-021-06548-2 pmid: 34705079 |
3 | Kang Y. Management of post-cardiac arrest syndrome. Acute Crit Care. 2019; 34(3): 173-8. |
4 |
Panchal AR, Bartos JA, Cabañas JG, Donnino MW, Drennan IR, Hirsch KG, et al. Part 3: adult basic and advanced life support: 2020 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2020; 142(16_suppl_2): S366-S468.
doi: 10.1161/CIR.0000000000000916 pmid: 33081529 |
5 | Kjaergaard J, Møller JE, Schmidt H, Grand J, Mølstrøm S, Borregaard B, et al. Blood-pressure targets in comatose survivors of cardiac arrest. N Engl J Med. 2022; 387(16): 1456-66. |
6 | Adatia K, Geocadin RG, Healy R, Ziai W, Ponce-Mejia L, Anderson-White M, et al. Effect of body temperature on cerebral autoregulation in acutely comatose neurocritically ill patients. Crit Care Med. 2018; 46(8): e733-e741. |
7 | van den Brule JD, van der Hoeven JG, Hoedemaekers CE. Cerebral perfusion and cerebral autoregulation after cardiac arrest. Biomed Res Int. 2018; 2018: 4143636. |
8 |
Sekhon MS, Gooderham P, Menon DK, Brasher PMA, Foster D, Cardim D, et al. The burden of brain hypoxia and optimal mean arterial pressure in patients with hypoxic ischemic brain injury after cardiac arrest. Crit Care Med. 2019; 47(7): 960-9.
doi: 10.1097/CCM.0000000000003745 pmid: 30889022 |
9 | Hoiland RL, Robba C, Menon DK, Citerio G, Sandroni C, Sekhon MS. Clinical targeting of the cerebral oxygen cascade to improve brain oxygenation in patients with hypoxic-ischaemic brain injury after cardiac arrest. Intensive Care Med. 2023; 49(9): 1062-78. |
10 |
Jakkula P, Reinikainen M, Hästbacka J, Loisa P, Tiainen M, Pettilä V, et al. Targeting two different levels of both arterial carbon dioxide and arterial oxygen after cardiac arrest and resuscitation: a randomised pilot trial. Intensive Care Med. 2018; 44(12): 2112-21.
doi: 10.1007/s00134-018-5453-9 pmid: 30430209 |
11 | Schmidt H, Kjaergaard J, Hassager C, Mølstrøm S, Grand J, Borregaard B, et al. Oxygen targets in comatose survivors of cardiac arrest. N Engl J Med. 2022; 387(16): 1467-76. |
12 | Curley G, Laffey JG, Kavanagh BP. Bench-to-bedside review: carbon dioxide. Crit Care. 2010; 14(2): 220. |
13 |
Eastwood GM, Schneider AG, Suzuki S, Peck L, Young H, Tanaka A, et al. Targeted therapeutic mild hypercapnia after cardiac arrest: a phase II multi-centre randomised controlled trial (the CCC trial). Resuscitation. 2016; 104: 83-90.
doi: 10.1016/j.resuscitation.2016.03.023 pmid: 27060535 |
14 | Eastwood G, Nichol AD, Hodgson C, Parke RL, McGuinness S, Nielsen N, et al. Mild hypercapnia or normocapnia after out-of-hospital cardiac arrest. N Engl J Med. 2023; 389(1): 45-57. |
15 | Scquizzato T, Sofia R, Gazzato A, Sudano A, Altizio S, Biondi-Zoccai G, et al. Coronary angiography findings in resuscitated and refractory out-of-hospital cardiac arrest: a systematic review and meta-analysis. Resuscitation. 2023; 189: 109869. |
16 |
Stub D, Bernard S, Duffy SJ, Kaye DM. Post cardiac arrest syndrome: a review of therapeutic strategies. Circulation. 2011; 123(13): 1428-35.
doi: 10.1161/CIRCULATIONAHA.110.988725 pmid: 21464058 |
17 |
Punniyakotty B, Ong XL, Ahmad M, Kirresh A. Improving Mortality in Pediatric Out-of-Hospital Cardiac Arrest Events Requires a Multifactorial Approach. JACC Asia. 2023; 3(1):166.
doi: 10.1016/j.jacasi.2022.11.011 pmid: 36873764 |
18 |
Allencherril J, Lee PYK, Khan K, Loya A, Pally A. Etiologies of in-hospital cardiac arrest: a systematic review and meta-analysis. Resuscitation. 2022; 175: 88-95.
doi: 10.1016/j.resuscitation.2022.03.005 pmid: 35278525 |
19 |
Dumas F, Cariou A, Manzo-Silberman S, Grimaldi D, Vivien B, Rosencher J, et al. Immediate percutaneous coronary intervention is associated with better survival after out-of-hospital cardiac arrest: insights from the PROCAT (Parisian Region Out of hospital Cardiac ArresT) registry. Circ Cardiovasc Interv. 2010; 3(3): 200-7.
doi: 10.1161/CIRCINTERVENTIONS.109.913665 pmid: 20484098 |
20 |
Shinada K, Koami H, Matsuoka A, Sakamoto Y. Prediction of return of spontaneous circulation in out-of-hospital cardiac arrest with non-shockable initial rhythm using point-of-care testing: a retrospective observational study. World J Emerg Med. 2023; 14(2):89-95.
doi: 10.5847/wjem.j.1920-8642.2023.031 pmid: 36911060 |
21 | Fernandez Hernandez S, Barlow B, Pertsovskaya V, Maciel CB. Temperature control after cardiac arrest: a narrative review. Adv Ther. 2023; 40(5): 2097-115. |
22 | Hypothermia after Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med. 2002; 346(8): 549-56. |
23 | Lascarrou JB, Merdji H, Le Gouge A, Colin G, Grillet G, Girardie P, et al. Targeted temperature management for cardiac arrest with nonshockable rhythm. N Engl J Med. 2019; 381(24): 2327-37. |
24 | Dankiewicz J, Cronberg T, Lilja G, Jakobsen JC, Levin H, Ullén S, et al. Hypothermia versus normothermia after out-of-hospital cardiac arrest. N Engl J Med. 2021; 384(24): 2283-94. |
25 |
Perman SM, Elmer J, Maciel CB, Uzendu A, May T, Mumma BE, et al. 2023 American Heart Association focused update on adult advanced cardiovascular life support: an update to the American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2024; 149(5): e254-e273.
doi: 10.1161/CIR.0000000000001194 pmid: 38108133 |
26 | Taccone FS, Picetti E, Vincent JL. High quality targeted temperature management (TTM) after cardiac arrest. Crit Care. 2020; 24(1): 6. |
27 | Thompson RG, Cobb LA. Hypokalemia after resuscitation from out-of-hospital ventricular fibrillation. JAMA. 1982; 248(21): 2860-3. |
28 |
Nolan JP, Sandroni C, Böttiger BW, Cariou A, Cronberg T, Friberg H, et al. European Resuscitation Council and European Society of Intensive Care Medicine guidelines 2021: post-resuscitation care. Resuscitation. 2021; 161: 220-69.
doi: 10.1016/j.resuscitation.2021.02.012 pmid: 33773827 |
29 | Sterns RH. Disorders of plasma sodium—causes, consequences, and correction. N Engl J Med. 2015; 372(1): 55-65. |
30 | Katsura K, Kristián T, Smith ML, Siesjö BK. Acidosis induced by hypercapnia exaggerates ischemic brain damage. J Cereb Blood Flow Metab. 1994; 14(2): 243-50. |
31 | Stengl M, Ledvinova L, Chvojka J, Benes J, Jarkovska D, Holas J, et al. Effects of clinically relevant acute hypercapnic and metabolic acidosis on the cardiovascular system: an experimental porcine study. Crit Care. 2013; 17(6): R303. |
32 | Seder DB, Sunde K, Rubertsson S, Mooney M, Stammet P, Riker RR, et al. Neurologic outcomes and postresuscitation care of patients with myoclonus following cardiac arrest. Crit Care Med. 2015; 43(5): 965-72. |
33 |
Tatum WO, Rubboli G, Kaplan PW, Mirsatari SM, Radhakrishnan K, Gloss D, et al. Clinical utility of EEG in diagnosing and monitoring epilepsy in adults. Clin Neurophysiol. 2018; 129(5): 1056-82.
doi: S1388-2457(18)30035-X pmid: 29483017 |
34 |
Rossetti AO, Claassen J, Gaspard N. Status epilepticus in the ICU. Intensive Care Med. 2024; 50(1): 1-16.
doi: 10.1007/s00134-023-07263-w pmid: 38117319 |
35 |
Thömke F, Weilemann SL. Poor prognosis despite successful treatment of postanoxic generalized myoclonus. Neurology. 2010; 74(17): 1392-4.
doi: 10.1212/WNL.0b013e3181dad5b9 pmid: 20421584 |
36 | Franklin Bunn H. Oxygen delivery in the treatment of anemia. N Engl J Med. 2022; 387(25): 2362-5. |
37 |
Zama Cavicchi F, Iesu E, Franchi F, Nobile L, Annoni F, Vincent JL, et al. Low hemoglobin and venous saturation levels are associated with poor neurological outcomes after cardiac arrest. Resuscitation. 2020; 153: 202-8.
doi: S0300-9572(20)30256-2 pmid: 32592732 |
38 |
Albaeni A, Eid SM, Akinyele B, Kurup LN, Vaidya D, Chandra-Strobos N. The association between post resuscitation hemoglobin level and survival with good neurological outcome following out of hospital cardiac arrest. Resuscitation. 2016; 99: 7-12.
doi: 10.1016/j.resuscitation.2015.11.015 pmid: 26687807 |
39 |
Godoy DA, Behrouz R, Di Napoli M. Glucose control in acute brain injury: does it matter? Curr Opin Crit Care. 2016; 22(2): 120-7.
doi: 10.1097/MCC.0000000000000292 pmid: 26866521 |
40 | Daviaud F, Dumas F, Demars N, Geri G, Bouglé A, Morichau-Beauchant T, et al. Blood glucose level and outcome after cardiac arrest: insights from a large registry in the hypothermia era. Intensive Care Med. 2014; 40(6): 855-62. |
41 | Schotola H, Toischer K, Popov AF, Renner A, Schmitto JD, Gummert J, et al. Mild metabolic acidosis impairs the β-adrenergic response in isolated human failing myocardium. Crit Care. 2012; 16(4): R153. |
42 | Rodríguez-Villar S, Kraut JA, Arévalo-Serrano J, Sakka SG, Harris C, Awad I, et al. Systemic acidemia impairs cardiac function in critically Ill patients. EClinicalMedicine. 2021; 37: 100956. |
43 | Kamada H, Ishibashi K, Miyazaki Y, Wakamiya A, Ueda N, Nakajima K, et al. Fatal arrhythmic risks in cardiac sarcoidosis with mildly impaired cardiac function. JACC Asia. 2023; 3(5):755-63. |
44 |
Jaeger M, Dengl M, Meixensberger J, Schuhmann MU. Effects of cerebrovascular pressure reactivity-guided optimization of cerebral perfusion pressure on brain tissue oxygenation after traumatic brain injury. Crit Care Med. 2010; 38(5): 1343-7.
doi: 10.1097/CCM.0b013e3181d45530 pmid: 20154598 |
45 | Sekhon MS, Griesdale DE. Individualized perfusion targets in hypoxic ischemic brain injury after cardiac arrest. Crit Care. 2017; 21(1): 259. |
46 | Olsen MH, Riberholt CG, Mehlsen J, Berg RM, Møller K. Reliability and validity of the mean flow index (Mx) for assessing cerebral autoregulation in humans: a systematic review of the methodology. J Cereb Blood Flow Metab. 2022; 42(1): 27-38. |
47 |
Schoenthal T, Hoiland R, Griesdale DE, Sekhon MS. Cerebral hemodynamics after cardiac arrest: implications for clinical management. Minerva Anestesiol. 2023; 89(9): 824-33.
doi: 10.23736/S0375-9393.23.17268-3 pmid: 37676177 |
48 | Schwarzmaier SM, Kim SW, Trabold R, Plesnila N. Temporal profile of thrombogenesis in the cerebral microcirculation after traumatic brain injury in mice. J Neurotrauma. 2010; 27(1): 121-30. |
49 |
Gong P, Zhao S, Wang JG, Yang ZF, Qian J, Wu XB, et al. Mild hypothermia preserves cerebral cortex microcirculation after resuscitation in a rat model of cardiac arrest. Resuscitation. 2015; 97: 109-14.
doi: 10.1016/j.resuscitation.2015.10.003 pmid: 26485658 |
50 |
Sekhon MS, Ainslie PN, Menon DK, Thiara SS, Cardim D, Gupta AK, et al. Brain hypoxia secondary to diffusion limitation in hypoxic ischemic brain injury postcardiac arrest. Crit Care Med. 2020; 48(3): 378-84.
doi: 10.1097/CCM.0000000000004138 pmid: 31789834 |
51 | Nakayama S, Migliati E, Amiry-Moghaddam M, Ottersen OP, Bhardwaj A. Osmotherapy with hypertonic saline attenuates global cerebral edema following experimental cardiac arrest via perivascular pool of aquaporin-4. Crit Care Med. 2016; 44(8): e702-10. |
52 |
Hoiland RL, Robba C, Menon DK, Sekhon MS. Differential pathophysiologic phenotypes of hypoxic ischemic brain injury: considerations for post-cardiac arrest trials. Intensive Care Med. 2020; 46(10): 1969-71.
doi: 10.1007/s00134-020-06200-5 pmid: 32761448 |
53 |
Schell RM, Cole DJ. Cerebral monitoring: jugular venous oximetry. Anesth Analg. 2000; 90(3): 559-66.
pmid: 10702437 |
54 |
Lazaridis C, Andrews CM. Brain tissue oxygenation, lactate-pyruvate ratio, and cerebrovascular pressure reactivity monitoring in severe traumatic brain injury: systematic review and viewpoint. Neurocrit Care. 2014; 21(2): 345-55.
doi: 10.1007/s12028-014-0007-7 pmid: 24993955 |
55 | Khellaf A, Garcia NM, Tajsic T, Alam A, Stovell MG, Killen MJ, et al. Focally administered succinate improves cerebral metabolism in traumatic brain injury patients with mitochondrial dysfunction. J Cereb Blood Flow Metab. 2022; 42(1): 39-55. |
[1] | Jie Chen, Zhonghao Li, Xiaoyu Liu, Tianpeng Hu, Nan Gao, Weijian Zhang, Guoqiang Zhang. Potential common key genes associated with myocardial dysfunction and brain injury following cardiac arrest resuscitation in a rat model [J]. World Journal of Emergency Medicine, 2025, 16(3): 231-238. |
[2] | Tingting Xu, Shaokun Wang, Liqiang Zhao, Jiawen Wang, Jihong Xing. A two-sample Mendelian randomization study on the relationship of body weight, body mass index, and waist circumference with cardiac arrest [J]. World Journal of Emergency Medicine, 2025, 16(2): 129-135. |
[3] | Wachira Wongtanasarasin, Daniel K. Nishijima, Wanrudee Isaranuwatchai, Jeffrey S. Hoch. Real-world cost-effectiveness of targeted temperature management in out-of-hospital cardiac arrest survivors: results from an academic medical center [J]. World Journal of Emergency Medicine, 2025, 16(1): 28-34. |
[4] | Subi Abudurexiti, Shihai Xu, Zhangping Sun, Yi Jiang, Ping Gong. Glucose metabolic reprogramming-related parameters for the prediction of 28-day neurological prognosis and all-cause mortality in patients after cardiac arrest: a prospective single-center observational study [J]. World Journal of Emergency Medicine, 2024, 15(3): 197-203. |
[5] | Rashed Alremeithi, Quincy K. Tran, Megan T. Quintana, Soroush Shahamatdar, Ali Pourmand. Approach to traumatic cardiac arrest in the emergency department: a narrative literature review for emergency providers [J]. World Journal of Emergency Medicine, 2024, 15(1): 3-9. |
[6] | Jing Yang, Hanqi Tang, Shihuan Shao, Feng Xu, Yangyang Fu, Shengyong Xu, Chen Li, Yan Li, Yang Liu, Joseph Harold Walline, Huadong Zhu, Yuguo Chen, Xuezhong Yu, Jun Xu. A novel predictor of unsustained return of spontaneous circulation in cardiac arrest patients through a combination of capnography and pulse oximetry: a multicenter observational study [J]. World Journal of Emergency Medicine, 2024, 15(1): 16-22. |
[7] | Gannan Wang, Zhe Wang, Yi Zhu, Zhongman Zhang, Wei Li, Xufeng Chen, Yong Mei. The neuro-prognostic value of the ion shift index in cardiac arrest patients following extracorporeal cardiopulmonary resuscitation [J]. World Journal of Emergency Medicine, 2023, 14(5): 354-359. |
[8] | Guang-qi Guo, Yan-nan Ma, Shuang Xu, Hong-rong Zhang, Peng Sun. Effect of post-rewarming fever after targeted temperature management in cardiac arrest patients: a systematic review and meta-analysis [J]. World Journal of Emergency Medicine, 2023, 14(3): 217-223. |
[9] | Gan-nan Wang, Zhong-man Zhang, Wen Chen, Xiao-quan Xu, Jin-song Zhang. Timing of brain computed tomography for predicting neurological prognosis in comatose cardiac arrest survivors: a retrospective observational study [J]. World Journal of Emergency Medicine, 2022, 13(5): 349-354. |
[10] | Shi-jiao Yan, Mei Chen, Jing Wen, Wen-ning Fu, Xing-yue Song, Huan-jun Chen, Ri-xing Wang, Mei-ling Chen, Xiao-tong Han, Chuan-zhu Lyu. Global research trends in cardiac arrest research: a visual analysis of the literature based on CiteSpace [J]. World Journal of Emergency Medicine, 2022, 13(4): 290-296. |
[11] | Hong-li Xiao, Lian-xing Zhao, Jun Yang, Nan Tong, Le An, Guo-xing Wang, Miao-rong Xie, Chun-sheng Li. Increasing angiotensin-converting enzyme (ACE) 2/ACE axes ratio alleviates early pulmonary vascular remodeling in a porcine model of acute pulmonary embolism with cardiac arrest [J]. World Journal of Emergency Medicine, 2022, 13(3): 208-214. |
[12] | Chao-yu Lei, Heng-wei Qin, Xue-jie Dong, Jia-lin You, Lin Zhang. Layperson’s performance on an unconversant type of AED device: A prospective crossover simulation experimental study [J]. World Journal of Emergency Medicine, 2022, 13(2): 98-105. |
[13] | Ji-yang Ling, Chun-sheng Li, Yun Zhang, Xiao-li Yuan, Bo Liu, Yong Liang, Qiang Zhang. Protective effect of extracorporeal membrane pulmonary oxygenation combined with cardiopulmonary resuscitation on post-resuscitation lung injury [J]. World Journal of Emergency Medicine, 2021, 12(4): 303-308. |
[14] | Wei-jing Shao, Ting-ting Shu, Shuang Xu, Li-cai Liang, Jehane Michael Le Grange, Yu-ran Zhou, He Huang, Yu Cai, Qing Zhang, Peng Sun. Left-sided vagus nerve stimulation improves cardiopulmonary resuscitation outcomes in rats as effectively as right-sided vagus nerve stimulation [J]. World Journal of Emergency Medicine, 2021, 12(4): 309-316. |
[15] | Gui-long Feng, Miao-miao Zheng, Shi-hong Yao, Yin-qi Li, Shao-jun Zhang, Wei-jing Wen, Kai Fan, Jia-li Zhang, Xiao Zhang. Risk factors and predictive model of adrenocortical insufficiency in patients with traumatic brain injury [J]. World Journal of Emergency Medicine, 2021, 12(3): 179-184. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||