World Journal of Emergency Medicine ›› 2025, Vol. 16 ›› Issue (2): 129-135.doi: 10.5847/wjem.j.1920-8642.2025.035
• Original Articles • Previous Articles Next Articles
Tingting Xu1, Shaokun Wang1, Liqiang Zhao2, Jiawen Wang3, Jihong Xing1()
Received:
2024-08-30
Accepted:
2025-02-03
Online:
2025-03-19
Published:
2025-03-01
Contact:
Jihong Xing, Email: Tingting Xu, Shaokun Wang, Liqiang Zhao, Jiawen Wang, Jihong Xing. A two-sample Mendelian randomization study on the relationship of body weight, body mass index, and waist circumference with cardiac arrest[J]. World Journal of Emergency Medicine, 2025, 16(2): 129-135.
Add to citation manager EndNote|Ris|BibTeX
URL: http://wjem.com.cn/EN/10.5847/wjem.j.1920-8642.2025.035
Table 1.
Summary of GWAS data on body weight, body mass index, and waist circumference
Exposure | GWAS ID | Sample size | Number of SNPs | Year |
---|---|---|---|---|
BMI | ieu-b-40 | 681,275 | 2,336,260 | 2018 |
BMI | ebi-a-GCST90029007 | 532,396 | 11,973,091 | 2018 |
BMI | ukb-b-19953 | 461460 | 9,851,867 | 2018 |
BMI | ebi-a-GCST90025994 | 457756 | 4,238,669 | 2021 |
BMI | ukb-b-2303 | 454,884 | 9,851,867 | 2018 |
BMI | ebi-a-GCST90013974 | 407,609 | 10,783,680 | 2021 |
BMI | ebi-a-GCST90018947 | 359,983 | 19,066,885 | 2021 |
BMI | ukb-a-248 | 336,107 | 10,894,596 | 2017 |
Body weight | ukb-b-11842 | 461,632 | 9,851,867 | 2018 |
Body weight | ukb-b-12039 | 454,893 | 9,851,867 | 2018 |
Body weight | ukb-a-249 | 336,227 | 10,894,596 | 2017 |
WC | ukb-a-382 | 336,639 | 10,894,596 | 2017 |
WC | ukb-b-9405 | 462,166 | 9,851,867 | 2018 |
Table 2.
Results of Mendelian randomization analyses on the association of body weight, body mass index, and waist circumference with cardiac arrest
Exposure | GWAS ID | Method | Numbers of SNPs | β | P-value | OR (95% CI) |
---|---|---|---|---|---|---|
BMI | ebi-a-GCST90013974 | IVW | 327 | 0.308 | 0.004 | 1.361 (1.099-1.684) |
MR-Egger | 327 | 0.025 | 0.933 | 1.025 (0.566-1.857) | ||
WM | 327 | 0.219 | 0.263 | 1.245 (0.847-1.832) | ||
BMI | ebi-a-GCST90018947 | IVW | 383 | 0.229 | 0.026 | 1.257 (1.026-1.540) |
MR-Egger | 383 | 0.072 | 0.799 | 1.075 (0.615-1.879) | ||
WM | 383 | 0.196 | 0.325 | 1.217 (0.822-1.802) | ||
BMI | ebi-a-GCST90025994 | IVW | 340 | 0.412 | 0.0001 | 1.510 (1.216-1.876) |
MR-Egger | 340 | 0.219 | 0.458 | 1.245 (0.696-2.227) | ||
WM | 340 | 0.337 | 0.099 | 1.401 (0.938-2.094) | ||
BMI | ebi-a-GCST90029007 | IVW | 441 | 0.278 | 0.005 | 1.321 (1.085-1.608) |
MR-Egger | 441 | 0.243 | 0.380 | 1.275 (0.740-2.196) | ||
WM | 441 | 0.319 | 0.074 | 1.376 (0.968-1.954) | ||
BMI | ieu-b-40 | IVW | 461 | 0.314 | 0.002 | 1.369 (1.116-1.679) |
MR-Egger | 461 | 0.387 | 0.177 | 1.473 (0.839-2.583) | ||
WM | 461 | 0.047 | 0.802 | 1.048 (0.724-1.517) | ||
BMI | ukb-a-248 | IVW | 278 | 0.312 | 0.002 | 1.367 (1.117-1.672) |
MR-Egger | 278 | 0.094 | 0.761 | 1.098 (0.597-2.022) | ||
WM | 278 | 0.205 | 0.264 | 1.228 (0.855-1.763) | ||
BMI | ukb-b-19953 | IVW | 412 | 0.389 | 7.36e-05 | 1.476 (1.217-1.790) |
MR-Egger | 412 | 0.280 | 0.315 | 1.323 (0.766-2.287) | ||
WM | 412 | 0.228 | 0.199 | 1.256 (0.886-1.799) | ||
BMI | ukb-b-2303 | IVW | 408 | 0.363 | 0.0002 | 1.438 (1.183-1.748) |
MR-Egger | 408 | 0.185 | 0.510 | 1.203 (0.693-2.088) | ||
WM | 408 | 0.231 | 0.211 | 1.260 (0.876-1.814) | ||
Weight | ukb-a-249 | IVW | 317 | 0.271 | 0.008 | 1.312 (1.070-1.608) |
MR-Egger | 317 | 0.151 | 0.595 | 1.164 (0.664-2.038) | ||
WM | 317 | 0.233 | 0.166 | 1.262 (0.907-1.758) | ||
Weight | ukb-b-11842 | IVW | 468 | 0.282 | 0.004 | 1.326 (1.092-1.611) |
MR-Egger | 468 | 0.107 | 0.681 | 1.113 (0.667-1.856) | ||
WM | 468 | 0.264 | 0.109 | 1.302 (0.942-1.800) | ||
Weight | ukb-b-12039 | IVW | 456 | 0.265 | 0.007 | 1.304 (1.072-1.586) |
MR-Egger | 456 | 0.296 | 0.261 | 1.345 (0.802-2.254) | ||
WM | 456 | 0.264 | 0.124 | 1.303 (0.929-1.827) | ||
WC | ukb-a-382 | IVW | 206 | 0.308 | 0.027 | 1.360 (1.035-1.788) |
MR-Egger | 206 | 0.725 | 0.104 | 2.065 (0.863-4.939) | ||
WM | 206 | 0.250 | 0.268 | 1.284 (0.824-2.002) | ||
WC | ukb-b-9405 | IVW | 342 | 0.375 | 0.003 | 1.455 (1.132-1.870) |
MR-Egger | 342 | 0.421 | 0.265 | 1.523 (0.726-3.195) | ||
WM | 342 | 0.279 | 0.213 | 1.322 (0.851-2.053) |
Table 3.
Cochran’s Q test results on body weight, body mass index, waist circumference, and cardiac arrest
Exposures | GWAS ID | IVW | MR-Egger | |
---|---|---|---|---|
Cochran’s Q P-value | Cochran’s Q P-value | |||
BMI | ieu-b-40 | 499.221 0.100 | 499.140 0.095 | |
BMI | ebi-a-GCST90029007 | 481.747 0.082 | 481.726 0.077 | |
BMI | ukb-b-19953 | 415.856 0.423 | 415.678 0.412 | |
BMI | ebi-a-GCST90025994 | 362.499 0.181 | 361.973 0.177 | |
BMI | ukb-b-2303 | 429.477 0.212 | 428.990 0.207 | |
BMI | ebi-a-GCST90013974 | 360.946 0.088 | 359.838 0.089 | |
BMI | ebi-a-GCST90018947 | 401.639 0.234 | 401.269 0.227 | |
BMI | ukb-a-248 | 281.738 0.409 | 281.174 0.402 | |
Weight | ukb-b-11842 | 485.165 0.271 | 484.615 0.266 | |
Weight | ukb-b-12039 | 469.743 0.306 | 469.726 0.295 | |
Weight | ukb-a-249 | 323.345 0.375 | 323.137 0.363 | |
WC | ukb-a-382 | 220.155 0.222 | 299.108 0.222 | |
WC | ukb-b-9405 | 373.201 0.110 | 373.182 0.104 |
Table 4.
MR-Egger intercept and P-value results on body weight, body mass index, waist circumference, and cardiac arrest
Exposures | GWAS ID | Intercept | P-value |
---|---|---|---|
BMI | ieu-b-40 | -0.001 | 0.785 |
BMI | ebi-a-GCST90029007 | 0.0006 | 0.891 |
BMI | ukb-b-19953 | 0.002 | 0.675 |
BMI | ebi-a-GCST90025994 | 0.004 | 0.484 |
BMI | ukb-b-2303 | 0.003 | 0.497 |
BMI | ebi-a-GCST90013974 | 0.006 | 0.317 |
BMI | ebi-a-GCST90018947 | 0.003 | 0.554 |
BMI | ukb-a-248 | 0.005 | 0.457 |
Weight | ukb-b-11842 | 0.003 | 0.467 |
Weight | ukb-b-12039 | -0.0005 | 0.898 |
Weight | ukb-a-249 | 0.002 | 0.652 |
WC | ukb-a-382 | -0.008 | 0.324 |
WC | ukb-b-9405 | -0.0007 | 0.896 |
Table 5.
Exposures ranked by their MIP and MACE in MR-BMA analyses
Exposures | GWAS ID | MIP | MACE |
---|---|---|---|
WC | ukb-b-9405 | 0.119 | 0.011 |
WC | ukb-a-382 | 0.116 | 0.005 |
BMI | ukb-b-19953 | 0.115 | 0.009 |
BMI | ebi-a-GCST90018947 | 0.110 | 0.002 |
Weight | ukb-b-12039 | 0.108 | 0.012 |
BMI | ebi-a-GCST90025994 | 0.107 | 0.009 |
Weight | ukb-b-11842 | 0.107 | 0.012 |
Weight | ukb-a-249 | 0.106 | 0.008 |
BMI | ebi-a-GCST90029007 | 0.105 | 0.008 |
BMI | ukb-b-2303 | 0.104 | 0.008 |
BMI | ieu-b-40 | 0.104 | 0.002 |
BMI | ebi-a-GCST90013974 | 0.099 | 0.006 |
BMI | ukb-a-248 | 0.098 | 0.002 |
Table 6.
Thirteen causal models based on full-model posterior probabilities estimated in the MR-BMA analysis
Exposure | GWAS ID | Posterior probability |
---|---|---|
WC | ukb-b-9405 | 0.057 |
WC | ukb-a-382 | 0.054 |
Weight | ukb-b-11842 | 0.052 |
Weight | ukb-b-12039 | 0.052 |
Weight | ukb-a-249 | 0.050 |
BMI | ebi-a-GCST90018947 | 0.049 |
BMI | ebi-a-GCST90025994 | 0.049 |
BMI | ebi-a-GCST90029007 | 0.048 |
BMI | ukb-b-19953 | 0.048 |
BMI | ukb-b-2303 | 0.048 |
BMI | ebi-a-GCST90013974 | 0.047 |
BMI | ieu-b-40 | 0.046 |
BMI | ukb-a-248 | 0.045 |
1 |
Myerburg RJ. Sudden cardiac death: interface between pathophysiology and epidemiology. Card Electrophysiol Clin. 2017; 9(4): 515-24.
doi: S1877-9182(17)30089-8 pmid: 29173398 |
2 | Kersten A. Resuscitation - practical implementation of guidelines and standards in the hospital. Dtsch Med Wochenschr. 2020; 145(8): 555-68. |
3 | Riva G, Ringh M, Jonsson M, Svensson L, Herlitz J, Claesson A, et al. Survival in out-of-hospital cardiac arrest after standard cardiopulmonary resuscitation or chest compressions only before arrival of emergency medical services: nationwide study during three guideline periods. Circulation. 2019; 139(23): 2600-9. |
4 |
Perkins GD, Graesner JT, Semeraro F, Olasveengen T, Soar J, Lott C, et al. European Resuscitation Council guidelines 2021: executive summary. Resuscitation. 2021; 161: 1-60.
doi: 10.1016/j.resuscitation.2021.02.003 pmid: 33773824 |
5 | Hwang SO, Cha KC, Jung WJ, Roh YI, Kim TY, Chung SP, et al. 2020 Korean Guidelines for Cardiopulmonary Resuscitation. Part 2. Environment for cardiac arrest survival and the chain of survival. Clin Exp Emerg Med. 2021; 8(Suppl): S8-S14. |
6 | Koskinas KC, Van Craenenbroeck EM, Antoniades C, Blüher M, Gorter TM, Hanssen H, et al. Obesity and cardiovascular disease: an ESC clinical consensus statement. Eur J Prev Cardiol. 2025; 32(3):184-220. |
7 |
Valenzuela PL, Carrera-Bastos P, Castillo-García A, Lieberman DE, Santos-Lozano A, Lucia A. Obesity and the risk of cardiometabolic diseases. Nat Rev Cardiol. 2023; 20(7): 475-94.
doi: 10.1038/s41569-023-00847-5 pmid: 36927772 |
8 |
Hong Y, Ullah R, Wang JB, Fu JF. Trends of obesity and overweight among children and adolescents in China. World J Pediatr. 2023; 19(12):1115-26.
doi: 10.1007/s12519-023-00709-7 pmid: 36920656 |
9 | Sung CW, Huang CH, Chen WJ, Chang WT, Wang CH, Wu YW, et al. Obese cardiogenic arrest survivors with significant coronary artery disease had worse in-hospital mortality and neurological outcomes. Sci Rep. 2020; 10(1): 18638. |
10 |
Geri G, Savary G, Legriel S, Dumas F, Merceron S, Varenne O, et al. Influence of body mass index on the prognosis of patients successfully resuscitated from out-of-hospital cardiac arrest treated by therapeutic hypothermia. Resuscitation. 2016; 109: 49-55.
doi: S0300-9572(16)30470-1 pmid: 27743918 |
11 | Calle EE, Thun MJ, Petrelli JM, Rodriguez C, Heath CW Jr. Body-mass index and mortality in a prospective cohort of U.S. adults. N Engl J Med. 1999; 341(15): 1097-105. |
12 | Twig G, Yaniv G, Levine H, Leiba AD, Goldberger N, Derazne E, et al. Body-mass index in 2.3 million adolescents and cardiovascular death in adulthood. N Engl J Med. 2016; 374(25): 2430-40. |
13 |
Jeong JH, Kim YG, Han KD, Roh SY, Lee HS, Choi YY, et al. Association of temporal change in body mass index with sudden cardiac arrest in diabetes mellitus. Cardiovasc Diabetol. 2024; 23(1): 46.
doi: 10.1186/s12933-024-02130-4 pmid: 38281993 |
14 |
Matsushita Y, Nakagawa T, Shinohara M, Yamamoto S, Takahashi Y, Mizoue T, et al. How can waist circumference predict the body composition? Diabetol Metab Syndr. 2014; 6(1): 11.
doi: 10.1186/1758-5996-6-11 pmid: 24472677 |
15 |
Coutinho T, Goel K, Corrêa de Sá D, Carter RE, Hodge DO, Kragelund C, et al. Combining body mass index with measures of central obesity in the assessment of mortality in subjects with coronary disease: role of “normal weight central obesity”. J Am Coll Cardiol. 2013; 61(5): 553-60.
doi: 10.1016/j.jacc.2012.10.035 pmid: 23369419 |
16 | Kim YG, Jeong JH, Roh SY, Han KD, Choi YY, Min K, et al. Obesity is indirectly associated with sudden cardiac arrest through various risk factors. J Clin Med. 2023; 12(5): 2068. |
17 |
Nuttall FQ. Body mass index: obesity, BMI, and health: a critical review. Nutr Today. 2015; 50(3): 117-28.
doi: 10.1097/NT.0000000000000092 pmid: 27340299 |
18 |
Busetto L, Bettini S, Makaronidis J, Roberts CA, Halford JCG, Batterham RL. Mechanisms of weight regain. Eur J Intern Med. 2021; 93: 3-7.
doi: 10.1016/j.ejim.2021.01.002 pmid: 33461826 |
19 |
Nishida C, Ko GT, Kumanyika S. Body fat distribution and noncommunicable diseases in populations: overview of the 2008 WHO Expert Consultation on Waist Circumference and Waist-Hip Ratio. Eur J Clin Nutr. 2010; 64(1): 2-5.
doi: 10.1038/ejcn.2009.139 pmid: 19935820 |
20 |
Long YW, Tang LH, Zhou YY, Zhao SS, Zhu H. Causal relationship between gut microbiota and cancers: a two-sample Mendelian randomisation study. BMC Med. 2023; 21(1): 66.
doi: 10.1186/s12916-023-02761-6 pmid: 36810112 |
21 |
Bowden J, Del Greco MF, Minelli C, Davey Smith G, Sheehan NA, Thompson JR. Assessing the suitability of summary data for two-sample Mendelian randomization analyses using MR-Egger regression: the role of the I2 statistic. Int J Epidemiol. 2016; 45(6): 1961-74.
doi: 10.1093/ije/dyw220 pmid: 27616674 |
22 |
Burgess S, Thompson SG; CRP CHD Genetics Collaboration. Avoiding bias from weak instruments in Mendelian randomization studies. Int J Epidemiol. 2011; 40(3): 755-64.
doi: 10.1093/ije/dyr036 pmid: 21414999 |
23 | Staley JR, Blackshaw J, Kamat MA, Ellis S, Surendran P, Sun BB, et al. PhenoScanner: a database of human genotype-phenotype associations. Bioinformatics. 2016; 32(20): 3207-9. |
24 | Lee CH, Cook S, Lee JS, Han B. Comparison of two meta-analysis methods: inverse-variance-weighted average and weighted sum of Z-scores. Genomics Inform. 2016; 14(4): 173-80. |
25 |
Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol. 2016; 40(4): 304-14.
doi: 10.1002/gepi.21965 pmid: 27061298 |
26 | Cohen JF, Chalumeau M, Cohen R, Korevaar DA, Khoshnood B, Bossuyt PMM. Cochran’s Q test was useful to assess heterogeneity in likelihood ratios in studies of diagnostic accuracy. J Clin Epidemiol. 2015; 68(3): 299-306. |
27 |
Burgess S, Thompson SG. Interpreting findings from Mendelian randomization using the MR-Egger method. Eur J Epidemiol. 2017; 32(5): 377-89.
doi: 10.1007/s10654-017-0255-x pmid: 28527048 |
28 | Lord J, Jermy B, Green R, Wong A, Xu J, Legido-Quigley C, et al. Mendelian randomization identifies blood metabolites previously linked to midlife cognition as causal candidates in Alzheimer’s disease. Proc Natl Acad Sci USA. 2021; 118(16): e2009808118. |
29 |
Zuber V, Colijn JM, Klaver C, Burgess S. Selecting likely causal risk factors from high-throughput experiments using multivariable Mendelian randomization. Nat Commun. 2020; 11(1): 29.
doi: 10.1038/s41467-019-13870-3 pmid: 31911605 |
30 |
Mi JR, Jiang LJ, Liu ZY, Wu X, Zhao N, Wang YZ, et al. Identification of blood metabolites linked to the risk of cholelithiasis: a comprehensive Mendelian randomization study. Hepatol Int. 2022; 16(6): 1484-93.
doi: 10.1007/s12072-022-10360-5 pmid: 35704268 |
31 |
Hu YL, Tan P, Wang JT, Zeng J, Li Q, Yan SJ, et al. Mendelian randomization study to investigate the causal relationship between plasma homocysteine and chronic obstructive pulmonary disease. World J Emerg Med. 2023; 14(5): 367-71.
doi: 10.5847/wjem.j.1920-8642.2023.078 pmid: 37908800 |
32 |
Global BMI Mortality Collaboration, Di Angelantonio E, Bhupathiraju ShN, Wormser D, Gao P, Kaptoge S, et al. Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents. Lancet. 2016; 388(10046): 776-86.
doi: 10.1016/S0140-6736(16)30175-1 pmid: 27423262 |
33 | Paratz ED, Ashokkumar S, van Heusden A, Smith K, Zentner D, Morgan N, et al. Obesity in young sudden cardiac death: rates, clinical features, and insights into people with body mass index >50kg/m2. Am J Prev Cardiol. 2022; 11: 100369. |
34 |
Cavalera M, Wang JH, Frangogiannis NG. Obesity, metabolic dysfunction, and cardiac fibrosis: pathophysiological pathways, molecular mechanisms, and therapeutic opportunities. Transl Res. 2014; 164(4): 323-35.
doi: 10.1016/j.trsl.2014.05.001 pmid: 24880146 |
35 |
Esposito K, Nicoletti G, Marzano S, Gualdiero P, Carusone C, Marfella R, et al. Autonomic dysfunction associates with prolongation of QT intervals and blunted night BP in obese women with visceral obesity. J Endocrinol Invest. 2002; 25(11): RC32-5.
doi: 10.1007/BF03344061 pmid: 12553548 |
36 | Tudorancea I, Șerban IL, Șerban DN, Costache-Enache II, Cătălin C, Naum AG, et al. Sympathetic nervous system inhibition enhances cardiac metabolism and improves hemodynamics and glucose-insulin dynamics in obese and lean rat models. Sci Rep. 2025; 15(1): 503. |
37 | Koparkar G, Biswas DA. Adiposity and cardiac defects: pathophysiology and etiology. Cureus. 2023; 15(1): e34026. |
38 |
Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nat Rev Immunol. 2011; 11(2): 85-97.
doi: 10.1038/nri2921 pmid: 21252989 |
39 | Ren J, Wu NN, Wang SY, Sowers JR, Zhang YM. Obesity cardiomyopathy: evidence, mechanisms, and therapeutic implications. Physiol Rev. 2021; 101(4): 1745-807. |
40 | Cerhan JR, Moore SC, Jacobs EJ, Kitahara CM, Rosenberg PS, Adami HO, et al. A pooled analysis of waist circumference and mortality in 650, 000 adults. Mayo Clin Proc. 2014; 89(3): 335-45. |
41 |
Li X, Katashima M, Yasumasu T, Li KJ. Visceral fat area, waist circumference and metabolic risk factors in abdominally obese Chinese adults. Biomed Environ Sci. 2012; 25(2): 141-8.
pmid: 22998819 |
42 | Chavda MP, Pakavakis A, Ernest D. Does obesity influence the outcome of the patients following a cardiac arrest? Indian J Crit Care Med. 2020; 24(11):1077-80. |
[1] | Wachira Wongtanasarasin, Daniel K. Nishijima, Wanrudee Isaranuwatchai, Jeffrey S. Hoch. Real-world cost-effectiveness of targeted temperature management in out-of-hospital cardiac arrest survivors: results from an academic medical center [J]. World Journal of Emergency Medicine, 2025, 16(1): 28-34. |
[2] | Subi Abudurexiti, Shihai Xu, Zhangping Sun, Yi Jiang, Ping Gong. Glucose metabolic reprogramming-related parameters for the prediction of 28-day neurological prognosis and all-cause mortality in patients after cardiac arrest: a prospective single-center observational study [J]. World Journal of Emergency Medicine, 2024, 15(3): 197-203. |
[3] | Rashed Alremeithi, Quincy K. Tran, Megan T. Quintana, Soroush Shahamatdar, Ali Pourmand. Approach to traumatic cardiac arrest in the emergency department: a narrative literature review for emergency providers [J]. World Journal of Emergency Medicine, 2024, 15(1): 3-9. |
[4] | Jing Yang, Hanqi Tang, Shihuan Shao, Feng Xu, Yangyang Fu, Shengyong Xu, Chen Li, Yan Li, Yang Liu, Joseph Harold Walline, Huadong Zhu, Yuguo Chen, Xuezhong Yu, Jun Xu. A novel predictor of unsustained return of spontaneous circulation in cardiac arrest patients through a combination of capnography and pulse oximetry: a multicenter observational study [J]. World Journal of Emergency Medicine, 2024, 15(1): 16-22. |
[5] | Yanlan Hu, Ping Tan, Juntao Wang, Jun Zeng, Quan Li, Shijiao Yan, Wenjie Hao, Lanfen He, Xingyue Song, Caihong Zhang, Chuanzhu Lyu. Mendelian randomization study to investigate the causal relationship between plasma homocysteine and chronic obstructive pulmonary disease [J]. World Journal of Emergency Medicine, 2023, 14(5): 367-371. |
[6] | Gannan Wang, Zhe Wang, Yi Zhu, Zhongman Zhang, Wei Li, Xufeng Chen, Yong Mei. The neuro-prognostic value of the ion shift index in cardiac arrest patients following extracorporeal cardiopulmonary resuscitation [J]. World Journal of Emergency Medicine, 2023, 14(5): 354-359. |
[7] | Guang-qi Guo, Yan-nan Ma, Shuang Xu, Hong-rong Zhang, Peng Sun. Effect of post-rewarming fever after targeted temperature management in cardiac arrest patients: a systematic review and meta-analysis [J]. World Journal of Emergency Medicine, 2023, 14(3): 217-223. |
[8] | Gan-nan Wang, Zhong-man Zhang, Wen Chen, Xiao-quan Xu, Jin-song Zhang. Timing of brain computed tomography for predicting neurological prognosis in comatose cardiac arrest survivors: a retrospective observational study [J]. World Journal of Emergency Medicine, 2022, 13(5): 349-354. |
[9] | Shi-jiao Yan, Mei Chen, Jing Wen, Wen-ning Fu, Xing-yue Song, Huan-jun Chen, Ri-xing Wang, Mei-ling Chen, Xiao-tong Han, Chuan-zhu Lyu. Global research trends in cardiac arrest research: a visual analysis of the literature based on CiteSpace [J]. World Journal of Emergency Medicine, 2022, 13(4): 290-296. |
[10] | Hong-li Xiao, Lian-xing Zhao, Jun Yang, Nan Tong, Le An, Guo-xing Wang, Miao-rong Xie, Chun-sheng Li. Increasing angiotensin-converting enzyme (ACE) 2/ACE axes ratio alleviates early pulmonary vascular remodeling in a porcine model of acute pulmonary embolism with cardiac arrest [J]. World Journal of Emergency Medicine, 2022, 13(3): 208-214. |
[11] | Chao-yu Lei, Heng-wei Qin, Xue-jie Dong, Jia-lin You, Lin Zhang. Layperson’s performance on an unconversant type of AED device: A prospective crossover simulation experimental study [J]. World Journal of Emergency Medicine, 2022, 13(2): 98-105. |
[12] | Ji-yang Ling, Chun-sheng Li, Yun Zhang, Xiao-li Yuan, Bo Liu, Yong Liang, Qiang Zhang. Protective effect of extracorporeal membrane pulmonary oxygenation combined with cardiopulmonary resuscitation on post-resuscitation lung injury [J]. World Journal of Emergency Medicine, 2021, 12(4): 303-308. |
[13] | Wei-jing Shao, Ting-ting Shu, Shuang Xu, Li-cai Liang, Jehane Michael Le Grange, Yu-ran Zhou, He Huang, Yu Cai, Qing Zhang, Peng Sun. Left-sided vagus nerve stimulation improves cardiopulmonary resuscitation outcomes in rats as effectively as right-sided vagus nerve stimulation [J]. World Journal of Emergency Medicine, 2021, 12(4): 309-316. |
[14] | Xue-jie Dong, Lin Zhang, Yue-lin Yu, Shu-xiao Shi, Xiao-chen Yang, Xiao-qian Zhang, Shuang Tian, Helge Myklebust, Guo-hong Li, Zhi-jie Zheng. The general public’s ability to operate automated external defibrillator: A controlled simulation study [J]. World Journal of Emergency Medicine, 2020, 11(4): 238-245. |
[15] | Ye-cheng Liu, Yan-meng Qi, Hui Zhang, Joseph Walline, Hua-dong Zhu. A survey of ventilation strategies during cardiopulmonary resuscitation [J]. World Journal of Emergency Medicine, 2019, 10(4): 222-227. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||