World Journal of Emergency Medicine ›› 2025, Vol. 16 ›› Issue (4): 313-320.doi: 10.5847/wjem.j.1920-8642.2025.062
• Original Articles • Previous Articles Next Articles
Young Min Kim1,2, Hyun Seok Chai1,2, Gwan Jin Park1,2, Sang Chul Kim1,2, Hoon Kim1,2, Seok Woo Lee1,2, Hyeon Jeong Park2, Han Bit Kim3, Hyo Been Lee4, Ji Han Lee2,5()
Received:
2024-07-29
Accepted:
2024-12-24
Online:
2025-07-18
Published:
2025-07-01
Contact:
Ji Han Lee
E-mail:capcloud80@hanmail.net
Young Min Kim, Hyun Seok Chai, Gwan Jin Park, Sang Chul Kim, Hoon Kim, Seok Woo Lee, Hyeon Jeong Park, Han Bit Kim, Hyo Been Lee, Ji Han Lee. Effect of bag valve ventilation versus mechanical ventilation after endotracheal intubation during cardiopulmonary resuscitation on outcomes following out-of-hospital cardiac arrest: a propensity score analysis[J]. World Journal of Emergency Medicine, 2025, 16(4): 313-320.
Add to citation manager EndNote|Ris|BibTeX
URL: http://wjem.com.cn/EN/10.5847/wjem.j.1920-8642.2025.062
Figure 2.
MV application rate and the COVID-19 infection rate by year. There was 0 MVs applied during resuscitation for OHCA patients in 2019, >50% in 2020, and >70% in 2021 and beyond. The COVID-19 infection rate peaked in 2022 among patients with cardiac arrest. OHCA: out-of-hospital cardiac arrest; MV: mechanical ventilator; COVID-19: Coronavirus disease 2019.
Table 1.
Baseline characteristics and laboratory findings of the patients in BV and MV groups
Variables | BV group (n=282) | MV group (n=367) | P-value |
---|---|---|---|
Age, years, mean±SD | 67.9±17.4 | 67.5±16.8 | 0.620 |
Male, n (%) | 173 (61.3) | 237 (64.6) | 0.445 |
Body mass index, kg/m2, mean±SD | 22.4±4.6 | 22.6±4.9 | 0.894 |
Comorbidities, n (%) | |||
Malignancy | 50 (17.8) | 76 (20.9) | 0.379 |
Diabetes mellitus | 84 (29.9) | 114 (31.3) | 0.762 |
Hypertension | 111 (39.5) | 133 (36.5) | 0.492 |
Dyslipidemia | 22 (7.8) | 26 (7.1) | 0.859 |
Chronic kidney disease | 38 (13.5) | 39 (10.7) | 0.333 |
Chronic liver disease | 16 (6.2) | 18 (5.8) | 0.973 |
Asthma/COPD | 21 (7.4) | 25 (6.9) | 0.887 |
Previous CVA | 34 (12.1) | 41 (11.3) | 0.838 |
Previous MI | 20 (7.1) | 29 (8.0) | 0.800 |
Witnessed cardiac arrest, n (%) | 186 (66.4) | 256 (69.9) | 0.386 |
Bystander performed CPR, n (%) | 187 (66.3) | 266 (72.5) | 0.122 |
Initial rhythm, n (%) | 0.697 | ||
Asystole | 175 (62.1) | 229 (62.4) | |
PEA | 73 (25.9) | 87 (23.7) | |
VT or VF | 34 (12.1) | 51 (13.9) | |
Defibrillation, n (%) | 75 (26.6) | 95 (25.9) | 0.888 |
No-flow time, min, mean±SD | 6.6±9.2 | 7.1±10.0 | 0.497 |
Total chest compression time, min, mean±SD | 41.9±19.1 | 51.1±23.8 | <0.001 |
EMS chest compression time, min, mean±SD | 23.3±14.4 | 23.3±12.6 | 0.632 |
ED chest compression time, min, mean±SD | 18.7±13.4 | 27.7±20.8 | <0.001 |
Laboratory findings, mean±SD | |||
Hemoglobin, g/dL | 11.1±3.7 | 11.0±3.4 | 0.872 |
Total bilirubin, mg/dL | 0.8±1.6 | 0.7±1.0 | 0.953 |
Creatinine, mg/dL | 2.1±2.5 | 2.1±2.3 | 0.489 |
Lactic acid, mmol/L | 12.9±5.8 | 13.8±8.0 | 0.233 |
Presumed cause of arrest, n (%) | 0.169 | ||
Cardiogenic | 47 (16.7) | 46 (12.5) | |
Noncardiogenic | 235 (83.3) | 321 (87.5) | |
Acute aortic syndrome | 1 (0.4) | 2 (0.5) | |
Pulmonary embolism | 6 (2.1) | 4 (1.1) | |
Sepsis | 7 (2.5) | 11 (3.0) | |
Respiratory failure | 49 (17.4) | 51 (13.9) | |
Hypovolemia | 13 (4.6) | 21 (5.7) | |
Cerebral hemorrhage | 8 (2.8) | 4 (1.1) | |
Others (unknown) | 151 (53.5) | 228 (62.1) |
Table 2.
Clinical outcomes of the patients in the BV and MV groups before and after propensity score match
Outcomes | Before propensity score matching | After propensity score matching | |||||
---|---|---|---|---|---|---|---|
BV group (n=282) | MV group (n=367) | P-value | BV group (n=261) | MV group (n=261) | P-value | ||
ROSC, n (%) | 98 (34.8) | 116 (31.6) | 0.447 | 82 (31.4) | 94 (36.0) | 0.308 | |
Survival at hospital admission, n (%) | 76 (27.0) | 75 (20.4) | 0.064 | 61 (23.4) | 62 (23.8) | 1.000 | |
Survival at hospital discharge, n (%) | 19 (6.7) | 23 (6.3) | 0.936 | 10 (3.8) | 22 (8.4) | 0.045 | |
Good neurologic outcomes at discharge*, n (%) | 9 (3.2) | 10 (2.7) | 0.909 | 4 (1.5) | 10 (3.8) | 0.176 | |
Pneumothorax#, n (%) | 9/214 (4.2) | 15/317 (4.7) | 0.942 | 9/198 (4.6) | 7/198 (3.5) | 0.295 |
1 | Soar J, Nolan JP, Böttiger BW, Perkins GD, Lott C, Carli P, et al. European resuscitation council guidelines for resuscitation 2015: section 3. adult advanced life support. Resuscitation. 2015;95: 100-47. |
2 |
Jacobs I, Nadkarni V, Bahr J, Berg RA, Billi JE, Bossaert L, et al. Cardiac arrest and cardiopulmonary resuscitation outcome reports: update and simplification of the Utstein templates for resuscitation registries: a statement for healthcare professionals from a task force of the International Liaison Committee on Resuscitation (American Heart Association, European Resuscitation Council, Australian Resuscitation Council, New Zealand Resuscitation Council, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Councils of Southern Africa). Circulation. 2004; 110(21): 3385-97.
doi: 10.1161/01.CIR.0000147236.85306.15 pmid: 15557386 |
3 |
Johannigman JA, Branson RD, Johnson DJ, Davis K Jr, Hurst JM. Out-of-hospital ventilation: bag-valve device vs transport ventilator. Acad Emerg Med. 1995; 2(8): 719-24.
pmid: 7584751 |
4 |
Weiss SJ, Ernst AA, Jones R, Ong M, Filbrun T, Augustin C, et al. Automatic transport ventilator versus bag valve in the EMS setting: a prospective, randomized trial. South Med J. 2005; 98(10): 970-6.
pmid: 16295811 |
5 | Edelson DP, Sasson C, Chan PS, Atkins DL, Aziz K, Becker LB, et al. Interim guidance for basic and advanced life support in adults, children, and neonates with suspected or confirmed COVID-19: from the emergency cardiovascular care committee and get with the guidelines-resuscitation adult and pediatric task forces of the American Heart Association. Circulation. 2020; 141(25): e933-e943. |
6 | Orlob S, Wittig J, Hobisch C, Auinger D, Honnef G, Fellinger T, et al. Reliability of mechanical ventilation during continuous chest compressions: a crossover study of transport ventilators in a human cadaver model of CPR. Scand J Trauma Resusc Emerg Med. 2021; 29(1): 102. |
7 | Ahn H, Kim KD, Jeong W, Lee JW, Yoo I, Ryu S. The adequacy of a conventional mechanical ventilator as a ventilation method during cardiopulmonary resuscitation: a manikin study. Acute Crit Care. 2015; 30(2): 89-94. |
8 | Silva PL, Scharffenberg M, Rocco PRM. Understanding the mechanisms of ventilator-induced lung injury using animal models. Intensive Care Med Exp. 2023; 11(1): 82. |
9 | Weber Sánchez A, Sofia V, Weber P. Validation of the Broca index as the most practical method to calculate the ideal body weight. J Clin Invest Stud. 2018; 1(1):1-4. |
10 | Perkins GD, Handley AJ, Koster RW, Castrén M, Smyth MA, Olasveengen T, et al. European resuscitation council guidelines for resuscitation 2015: section 2. Adult basic life support and automated external defibrillation. Resuscitation. 2015; 95: 81-99. |
11 | Tan DY, Xu J, Shao SH, Fu YY, Sun F, Zhang YZ, et al. Comparison of different inspiratory triggering settings in automated ventilators during cardiopulmonary resuscitation in a porcine model. PLoS One. 2017; 12(2): e0171869. |
12 | Hernández-Tejedor A, González Puebla V, Corral Torres E, Benito Sánchez A, Pinilla López R, Galán Calategui MD. Ventilatory improvement with mechanical ventilator versus bag in non-traumatic out-of-hospital cardiac arrest: SYMEVECA study, phase 1. Resuscitation. 2023; 192: 109965. |
13 | Shin J, Lee HJ, Jin KN, Shin JH, You KM, Lee SGW, et al. Automatic mechanical ventilation vs manual bag ventilation during CPR: a pilot randomized controlled trial. Chest. 2024; 166(2): 311-20. |
14 | Tangpaisarn T, Tosibphanom J, Sata R, Kotruchin P, Drumheller B, Phungoen P. The effects of mechanical versus bag-valve ventilation on gas exchange during cardiopulmonary resuscitation in emergency department patients: a randomized controlled trial (CPR-VENT). Resuscitation. 2023; 193: 109966. |
15 | Panchal A, Bartos J, Cabañas J, Donnino M, Drennan I, Hirsch K, et al. Part 3: adult basic and advanced life support: 2020 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2020; 142(16_suppl_2):S366-S468. |
16 |
Soar J, Böttiger BW, Carli P, Couper K, Deakin CD, Djärv T, et al. European resuscitation council guidelines 2021: adult advanced life support. Resuscitation. 2021; 161: 115-51.
doi: 10.1016/j.resuscitation.2021.02.010 pmid: 33773825 |
17 |
Cordioli RL, Brochard L, Suppan L, Lyazidi A, Templier F, Khoury A, et al. How ventilation is delivered during cardiopulmonary resuscitation: an international survey. Respir Care. 2018; 63(10): 1293-301.
doi: 10.4187/respcare.05964 pmid: 29739857 |
18 | Sahetya SK, Goligher EC, Brower RG. Fifty years of research in ARDS. Setting positive end-expiratory pressure in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2017; 195(11): 1429-38. |
19 |
Mercat A, Richard JM, Vielle B, Jaber S, Osman D, Diehl JL, et al. Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2008; 299(6): 646-55.
doi: 10.1001/jama.299.6.646 pmid: 18270353 |
20 |
Villar J, Kacmarek RM, Pérez-Méndez L, Aguirre-Jaime A. A high positive end-expiratory pressure, low tidal volume ventilatory strategy improves outcome in persistent acute respiratory distress syndrome: a randomized, controlled trial. Crit Care Med. 2006; 34(5): 1311-8.
doi: 10.1097/01.CCM.0000215598.84885.01 pmid: 16557151 |
21 | Jang SJ, Cha YK, Kim JS, Do HH, Bak SH, Kwack WG. Computed tomographic findings of chest injuries following cardiopulmonary resuscitation: more complications for prolonged chest compressions? Medicine (Baltimore). 2020; 99(33): e21685. |
22 | Lardi C, Egger C, Larribau R, Niquille M, Mangin P, Fracasso T. Traumatic injuries after mechanical cardiopulmonary resuscitation (LUCAS™2):a forensic autopsy study. Int J Leg Med. 2015; 129(5): 1035-42. |
23 | Sen-Crowe B, Sutherland M, McKenney M, Elkbuli A. A closer look into global hospital beds capacity and resource shortages during the COVID-19 pandemic. J Surg Res. 2021; 260: 56-63. |
24 |
Ott M, Milazzo A, Liebau S, Jaki C, Schilling T, Krohn A, et al. Exploration of strategies to reduce aerosol-spread during chest compressions: a simulation and cadaver model. Resuscitation. 2020; 152: 192-8.
doi: S0300-9572(20)30191-X pmid: 32437780 |
25 |
Christian MD, Loutfy M, Clifford McDonald L, Martinez KF, Ofner M, Wong T, et al. Possible SARS coronavirus transmission during cardiopulmonary resuscitation. Emerg Infect Dis. 2004; 10(2): 287-93.
pmid: 15030699 |
26 | Chan MTV, Chow BK, Lo T, Ko FW, Ng SS, Gin T, et al. Exhaled air dispersion during bag-mask ventilation and sputum suctioning - Implications for infection control. Sci Rep. 2018; 8(1): 198. |
27 | Tran K, Cimon K, Severn M, Pessoa-Silva CL, Conly J. Aerosol generating procedures and risk of transmission of acute respiratory infections to healthcare workers: a systematic review. PLoS One. 2012; 7(4): e35797. |
28 | Bhanji F, Mancini ME, Sinz E, Rodgers DL, McNeil MA, Hoadley TA, et al. Part 16: education, implementation, and teams: 2010 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2010; 122(18Suppl 3): S920-S933. |
[1] | Rui Shao, Chenchen Hang, Xingsheng Wang, Luying Zhang, Fei Shao, Ziren Tang. The “SOOTEST-ICU” bundle for optimizing cerebral hypoxia and reperfusion to minimize brain injury after resuscitation from cardiac arrest [J]. World Journal of Emergency Medicine, 2025, 16(3): 206-211. |
[2] | Jie Chen, Zhonghao Li, Xiaoyu Liu, Tianpeng Hu, Nan Gao, Weijian Zhang, Guoqiang Zhang. Potential common key genes associated with myocardial dysfunction and brain injury following cardiac arrest resuscitation in a rat model [J]. World Journal of Emergency Medicine, 2025, 16(3): 231-238. |
[3] | Tingting Xu, Shaokun Wang, Liqiang Zhao, Jiawen Wang, Jihong Xing. A two-sample Mendelian randomization study on the relationship of body weight, body mass index, and waist circumference with cardiac arrest [J]. World Journal of Emergency Medicine, 2025, 16(2): 129-135. |
[4] | Wachira Wongtanasarasin, Daniel K. Nishijima, Wanrudee Isaranuwatchai, Jeffrey S. Hoch. Real-world cost-effectiveness of targeted temperature management in out-of-hospital cardiac arrest survivors: results from an academic medical center [J]. World Journal of Emergency Medicine, 2025, 16(1): 28-34. |
[5] | Subi Abudurexiti, Shihai Xu, Zhangping Sun, Yi Jiang, Ping Gong. Glucose metabolic reprogramming-related parameters for the prediction of 28-day neurological prognosis and all-cause mortality in patients after cardiac arrest: a prospective single-center observational study [J]. World Journal of Emergency Medicine, 2024, 15(3): 197-203. |
[6] | Jing Yang, Hanqi Tang, Shihuan Shao, Feng Xu, Yangyang Fu, Shengyong Xu, Chen Li, Yan Li, Yang Liu, Joseph Harold Walline, Huadong Zhu, Yuguo Chen, Xuezhong Yu, Jun Xu. A novel predictor of unsustained return of spontaneous circulation in cardiac arrest patients through a combination of capnography and pulse oximetry: a multicenter observational study [J]. World Journal of Emergency Medicine, 2024, 15(1): 16-22. |
[7] | Rashed Alremeithi, Quincy K. Tran, Megan T. Quintana, Soroush Shahamatdar, Ali Pourmand. Approach to traumatic cardiac arrest in the emergency department: a narrative literature review for emergency providers [J]. World Journal of Emergency Medicine, 2024, 15(1): 3-9. |
[8] | Gannan Wang, Zhe Wang, Yi Zhu, Zhongman Zhang, Wei Li, Xufeng Chen, Yong Mei. The neuro-prognostic value of the ion shift index in cardiac arrest patients following extracorporeal cardiopulmonary resuscitation [J]. World Journal of Emergency Medicine, 2023, 14(5): 354-359. |
[9] | Guang-qi Guo, Yan-nan Ma, Shuang Xu, Hong-rong Zhang, Peng Sun. Effect of post-rewarming fever after targeted temperature management in cardiac arrest patients: a systematic review and meta-analysis [J]. World Journal of Emergency Medicine, 2023, 14(3): 217-223. |
[10] | Gan-nan Wang, Zhong-man Zhang, Wen Chen, Xiao-quan Xu, Jin-song Zhang. Timing of brain computed tomography for predicting neurological prognosis in comatose cardiac arrest survivors: a retrospective observational study [J]. World Journal of Emergency Medicine, 2022, 13(5): 349-354. |
[11] | Shi-jiao Yan, Mei Chen, Jing Wen, Wen-ning Fu, Xing-yue Song, Huan-jun Chen, Ri-xing Wang, Mei-ling Chen, Xiao-tong Han, Chuan-zhu Lyu. Global research trends in cardiac arrest research: a visual analysis of the literature based on CiteSpace [J]. World Journal of Emergency Medicine, 2022, 13(4): 290-296. |
[12] | Hong-li Xiao, Lian-xing Zhao, Jun Yang, Nan Tong, Le An, Guo-xing Wang, Miao-rong Xie, Chun-sheng Li. Increasing angiotensin-converting enzyme (ACE) 2/ACE axes ratio alleviates early pulmonary vascular remodeling in a porcine model of acute pulmonary embolism with cardiac arrest [J]. World Journal of Emergency Medicine, 2022, 13(3): 208-214. |
[13] | Chao-yu Lei, Heng-wei Qin, Xue-jie Dong, Jia-lin You, Lin Zhang. Layperson’s performance on an unconversant type of AED device: A prospective crossover simulation experimental study [J]. World Journal of Emergency Medicine, 2022, 13(2): 98-105. |
[14] | Ji-yang Ling, Chun-sheng Li, Yun Zhang, Xiao-li Yuan, Bo Liu, Yong Liang, Qiang Zhang. Protective effect of extracorporeal membrane pulmonary oxygenation combined with cardiopulmonary resuscitation on post-resuscitation lung injury [J]. World Journal of Emergency Medicine, 2021, 12(4): 303-308. |
[15] | Wei-jing Shao, Ting-ting Shu, Shuang Xu, Li-cai Liang, Jehane Michael Le Grange, Yu-ran Zhou, He Huang, Yu Cai, Qing Zhang, Peng Sun. Left-sided vagus nerve stimulation improves cardiopulmonary resuscitation outcomes in rats as effectively as right-sided vagus nerve stimulation [J]. World Journal of Emergency Medicine, 2021, 12(4): 309-316. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||