1 |
Hu H, Jiang JY, Yao N. Comparison of different versions of the quick sequential organ failure assessment for predicting in-hospital mortality of sepsis patients: A retrospective observational study. World J Emerg Med. 2022 ;13(2):114-9.
|
2 |
World Health Organization. Global report on the epidemiology and burden of sepsis. Available at: https://www.who.int/publications-detail-redirect/9789240010789
|
3 |
Uffen JW, Oosterheert JJ, Schweitzer VA, Thursky K, Kaasjager HAH, Ekkelenkamp MB. Interventions for rapid recognition and treatment of sepsis in the emergency department: a narrative review. Clin Microbiol Infect. 2021 ;27(2):192-203.
|
4 |
Zhang WY, Chen ZH, An XX, Li H, Zhang HL, Wu SJ, et al. Analysis and validation of diagnostic biomarkers and immune cell infiltration characteristics in pediatric sepsis by integrating bioinformatics and machine learning. World J Pediatr. 2023 ;19(11):1094-1103.
|
5 |
Piccioni A, Santoro MC, de Cunzo T, Tullo G, Cicchinelli S, Saviano A, et al. Presepsin as early marker of sepsis in emergency department: a narrative review. Medicina. 2021 ;57(8):770.
|
6 |
Goh KH, Wang L, Yeow AYK, Poh H, Li K, Yeow JJL, et al. Artificial intelligence in sepsis early prediction and diagnosis using unstructured data in healthcare. Nat Commun. 2021 ;12(1):711.
|
7 |
Stewart T, Stern K, O’Keefe G, Teredesai A, Hu JH. NPRL: nightly profile representation learning for early sepsis onset prediction in ICU trauma patients. 2023 IEEE International Conference on Big Data (Big Data). Sorrento, Italy. IEEE, 2023: 1843-52.
|
8 |
Kim J, Chang H, Kim D, Jang DH, Park I, Kim K. Machine learning for prediction of septic shock at initial triage in emergency department. J Crit Care. 2020;55:163-70.
|
9 |
Wardi G, Carlile M, Holder A, Shashikumar S, Hayden SR, Nemati S. Predicting progression to septic shock in the emergency department using an externally generalizable machine-learning algorithm. Ann Emerg Med. 2021 ;77(4): 395-406.
|
10 |
Johnson AEW, Bulgarelli L, Shen L, Gayles A, Shammout A, Horng S, et al. MIMIC-IV, a freely accessible electronic health record dataset. Sci Data. 2023 ;10(1):1.
|
11 |
Development and validation of a nomogram for predicting survival in patients with acute pancreatitis. World J Emerg Med. 2023 ;14(1):44-8.
|
12 |
Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov PC, Mark RG, et al. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation. 2000 ;101(23):E215-E220.
|
13 |
Liu J, Zhou Y, Huang HZ, Liu R, Kang Y, Zhu TT, et al. Impact of stress hyperglycemia ratio on mortality in patients with critical acute myocardial infarction: insight from American MIMIC-IV and the Chinese CIN-II study. Cardiovasc Diabetol. 2023 ;22(1): 281.
|
14 |
Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016 ;315(8):801-10.
|
15 |
Henry KE, Adams R, Parent C, Soleimani H, Sridharan A, Johnson L, et al. Factors driving provider adoption of the TREWS machine learning-based early warning system and its effects on sepsis treatment timing. Nat Med. 2022 ;28(7):1447-54.
|
16 |
Chen T, Guestrin C. XGBoost:a scalable tree boosting system. In:Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco California: USA; 2016:785-94.
|
17 |
Lundberg S, Lee SI. A unified approach to interpreting model predictions. arXiv E Prints. 2017: arXiv: 1705.07874.
|
18 |
Lundberg SM, Erion G, Chen H, deGrave A, Prutkin JM, Nair B, et al. Explainable AI for trees: from local explanations to global understanding. arXiv E Prints. 2019: arXiv: 1905.04610.
|
19 |
Williams CY, Edinburgh T, Elbers PW, Thoral PJ, Ercole A. Application of the Sepsis-3 criteria to describe sepsis epidemiology in the Amsterdam UMCdb intensive care dataset. Available at https://www.medrxiv.org/content/medrxiv/early/2023/09/25/2023.09.24.23296037.full.pdf
|
20 |
Hu W, Yang M, Chen H. Database-based machine learning in sepsis deserves attention. Intensive Care Med. 2023 ;49(2):262-3.
|