World Journal of Emergency Medicine ›› 2023, Vol. 14 ›› Issue (1): 10-16.doi: 10.5847/wjem.j.1920-8642.2023.019
• Review Articles • Previous Articles Next Articles
Jue-xian Wei, Hui-lin Jiang, Xiao-hui Chen()
Received:
2022-10-29
Accepted:
2022-12-10
Online:
2023-01-05
Published:
2023-01-01
Contact:
Xiao-hui Chen
E-mail:cxhgz168paper@163.com
Jue-xian Wei, Hui-lin Jiang, Xiao-hui Chen. Endothelial cell metabolism in sepsis[J]. World Journal of Emergency Medicine, 2023, 14(1): 10-16.
Add to citation manager EndNote|Ris|BibTeX
URL: http://wjem.com.cn/EN/10.5847/wjem.j.1920-8642.2023.019
[1] |
Duan LW, Qu JL, Wan J, Xu YH, Shan Y, Wu LX, et al. Effects of viral infection and microbial diversity on patients with sepsis: A retrospective study based on metagenomic next-generation sequencing. World J Emerg Med. 2021; 12(1):29-35.
doi: 10.5847/wjem.j.1920-8642.2021.01.005 |
[2] |
Yin J, Chen Y, Huang JL, Yan L, Kuang ZS, Xue MM, Sun S, Xiang H, Hu YY, Dong ZM, Tong CY, Bai CX, Song ZJ. Prognosis-related classification and dynamic monitoring of immune status in patients with sepsis: A prospective observational study. World J Emerg Med. 2021; 12(3):185-191.
doi: 10.5847/wjem.j.1920-8642.2021.03.004 pmid: 34141032 |
[3] |
Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi D, Kievlan DR, et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study. Lancet. 2020; 395(10219):200-11.
doi: S0140-6736(19)32989-7 pmid: 31954465 |
[4] |
Joffre J, Hellman J, Ince C, Ait-Oufella H. Endothelial responses in sepsis. Am J Respir Crit Care Med. 2020; 202(3):361-70.
doi: 10.1164/rccm.201910-1911TR |
[5] | Colbert JF, Schmidt EP. Endothelial and microcirculatory function and dysfunction in sepsis. Clin Chest Med. 2016; 37(2):263-75. |
[6] |
Fry DE. Sepsis, systemic inflammatory response, and multiple organ dysfunction: the mystery continues. Am Surg. 2012; 78(1):1-8.
pmid: 22273282 |
[7] |
Aird WC. Phenotypic heterogeneity of the endothelium. Circ Res. 2007; 100(2):174-90.
doi: 10.1161/01.RES.0000255690.03436.ae |
[8] |
Liu ZC, Yin PY, Amathieu R, Savarin P, Xu GW. Application of LC-MS-based metabolomics method in differentiating septic survivors from non-survivors. Anal Bioanal Chem. 2016; 408(27):7641-9.
pmid: 27614981 |
[9] | Toral M, Romero M, Jiménez R, Mahmoud AM, Barroso E, Gómez-Guzmán M, et al. Carnitine palmitoyltransferase-1 up-regulation by PPAR-β/δ prevents lipid-induced endothelial dysfunction. Clin Sci. 2015;129(9):823-37. |
[10] | McGarrity S, Anuforo Ó, Halldórsson H, Bergmann A, Halldórsson S, Palsson S, et al. Metabolic systems analysis of LPS induced endothelial dysfunction applied to sepsis patient stratification. Sci Rep. 2018;8(1):6811. |
[11] |
Eelen G, de Zeeuw P, Treps L, Harjes U, Wong BW, Carmeliet P. Endothelial cell metabolism. Physiol Rev. 2018; 98(1):3-58.
doi: 10.1152/physrev.00001.2017 pmid: 29167330 |
[12] |
Teuwen LA, Draoui N, Dubois C, Carmeliet P. Endothelial cell metabolism: an update anno 2017. Curr Opin Hematol. 2017; 24(3):240-7.
doi: 10.1097/MOH.0000000000000335 |
[13] |
Bock KD, Georgiadou M, Schoors S, Kuchnio A, Wong BW, Cantelmo AR, et al. Role of PFKFB3-driven glycolysis in vessel sprouting. Cell. 2013; 154(3):651-63.
doi: 10.1016/j.cell.2013.06.037 |
[14] |
Tang CY, Mauro C. Similarities in the metabolic reprogramming of immune system and endothelium. Front Immunol. 2017; 8:837.
doi: 10.3389/fimmu.2017.00837 |
[15] | van Wyngene L, Vandewalle J, Libert C. Reprogramming of basic metabolic pathways in microbial sepsis: therapeutic targets at last? EMBO Mol Med. 2018; 10(8):e8712. |
[16] | Yang K, Fan M, Wang XH, Xu JJ, Wang YN, Gill PS, et al. Lactate induces vascular permeability via disruption of VE-cadherin in endothelial cells during sepsis. Sci Adv. 2022; 8(17):eabm8965. |
[17] |
Fan M, Yang K, Wang XH, Zhang X, Xu JJ, Tu F, et al. Lactate impairs vascular permeability by inhibiting hspa12b expression via gpr81-dependent signaling in sepsis. Shock. 2022; 58(4): 304-12.
doi: 10.1097/SHK.0000000000001983 pmid: 36256626 |
[18] |
Wang LN, Cao YP, Gorshkov B, Zhou YQ, Yang QH, Xu JA, et al. Ablation of endothelial PFKFB3 protects mice from acute lung injury in LPS-induced endotoxemia. Pharmacol Res. 2019; 146: 104292.
doi: 10.1016/j.phrs.2019.104292 |
[19] |
Zheng ZB, Ma H, Zhang X, Tu F, Wang XH, Ha TZ, et al. Enhanced glycolytic metabolism contributes to cardiac dysfunction in polymicrobial sepsis. J Infect Dis. 2017; 215(9):1396-406.
doi: 10.1093/infdis/jix138 pmid: 28368517 |
[20] |
Mao LF, Sun MM, Chen ZF, Zeng ZH, Wu J, Chen ZQ, et al. The pyruvate dehydrogenase complex mitigates LPS-induced endothelial barrier dysfunction by metabolic regulation. Shock. 2022; 57(6):308-17.
doi: 10.1097/SHK.0000000000001931 pmid: 35759309 |
[21] |
Ekaney ML, Otto GP, Sossdorf M, Sponholz C, Boehringer M, Loesche W, et al. Impact of plasma histones in human sepsis and their contribution to cellular injury and inflammation. Crit Care. 2014; 18(5):543.
doi: 10.1186/s13054-014-0543-8 |
[22] | Vizán P, Sánchez-Tena S, Alcarraz-Vizán G, Soler M, Messeguer R, Pujol MD, et al. Characterization of the metabolic changes underlying growth factor angiogenic activation: identification of new potential therapeutic targets. Carcinogenesis. 2009;30(6):946-52. |
[23] |
Zhang Z, Apse K, Pang J, Stanton RC. High glucose inhibits glucose-6-phosphate dehydrogenase via cAMP in aortic endothelial cells. J Biol Chem. 2000; 275(51):40042-7.
doi: 10.1074/jbc.M007505200 pmid: 11007790 |
[24] |
Spolarics Z, Stein DS, Garcia ZC. Endotoxin stimulates hydrogen peroxide detoxifying activity in rat hepatic endothelial cells. Hepatology. 1996; 24(3):691-6.
pmid: 8781344 |
[25] |
Spolarics Z, Navarro L. Endotoxin stimulates the expression of glucose-6-phosphate dehydrogenase in Kupffer and hepatic endothelial cells. J Leukoc Biol. 1994; 56(4):453-7.
doi: 10.1002/jlb.56.4.453 |
[26] |
Förstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2011; 33(7):829-37.
doi: 10.1093/eurheartj/ehr304 |
[27] |
Chon J, Stover PJ, Field MS Targeting nuclear thymidylate biosynthesis Mol Aspects Med. 2017; 53:48-56.
doi: S0098-2997(16)30060-7 pmid: 27876557 |
[28] |
Langbein H, Brunssen C, Hofmann A, Cimalla P, Brux M, Bornstein SR, et al. NADPH oxidase 4 protects against development of endothelial dysfunction and atherosclerosis in LDL receptor deficient mice. Eur Heart J. 2016; 37(22):1753-61.
doi: 10.1093/eurheartj/ehv564 pmid: 26578199 |
[29] |
Jiang JY, Huang K, Xu SQ, Garcia JGN, Wang C, Cai H. Targeting NOX4 alleviates sepsis-induced acute lung injury via attenuation of redox-sensitive activation of CaMKII/ERK1/2/MLCK and endothelial cell barrier dysfunction. Redox Biol. 2020; 36:101638.
doi: 10.1016/j.redox.2020.101638 |
[30] |
Miyoshi T, Yamashita K, Arai T, Yamamoto K, Mizugishi K, Uchiyama T. The role of endothelial interleukin-8/NADPH oxidase 1 axis in sepsis. Immunology. 2010; 131(3):331-9.
doi: 10.1111/j.1365-2567.2010.03303.x pmid: 20518825 |
[31] | Sarmiento D, Montorfano I, Cáceres M, Echeverría C, Fernández R, Cabello-Verrugio C, et al. Endotoxin-induced vascular endothelial cell migration is dependent on TLR4/NF-κB pathway, NAD(P)H oxidase activation, and transient receptor potential melastatin 7 calcium channel activity. Int J Biochem Cell Biol. 2014;55:11-23. |
[32] |
Wang ZF, Rui T, Yang M, Valiyeva F, Kvietys PR. Alveolar macrophages from septic mice promote polymorphonuclear leukocyte transendothelial migration via an endothelial cell Src kinase/NADPH oxidase pathway. J Immunol. 2008; 181(12):8735-44.
pmid: 19050294 |
[33] |
Gill SE, Rohan M, Mehta S. Role of pulmonary microvascular endothelial cell apoptosis in murine sepsis-induced lung injury in vivo. Respir Res. 2015; 16(1):109.
doi: 10.1186/s12931-015-0266-7 |
[34] |
Trevelin SC, Sag CM, Zhang M, Alves-Filho JC, Cunha TM, Santos CXD, et al. Endothelial Nox2 limits systemic inflammation and hypotension in endotoxemia by controlling expression of toll-like receptor 4. Shock. 2021; 56(2):268-77.
doi: 10.1097/SHK.0000000000001706 pmid: 34276040 |
[35] |
Wu F, Schuster DP, Tyml K, Wilson JX.Ascorbate inhibits NADPH oxidase subunit p47phox expression in microvascular endothelial cells. Free Radic Biol Med. 2007; 42(1):124-31.
doi: 10.1016/j.freeradbiomed.2006.10.033 |
[36] | Kröller-Schön S, Knorr M, Hausding M, Oelze M, Schuff A, Schell R, et al. Glucose-independent improvement of vascular dysfunction in experimental sepsis by dipeptidyl-peptidase 4 inhibition. Cardiovasc Res. 2012;96(1):140-9. |
[37] |
Yu CW, Liang XL, Lipsky S, Karaaslan C, Kozakewich H, Hotamisligil GS, et al. Dual role of fatty acid-binding protein 5 on endothelial cell fate: a potential link between lipid metabolism and angiogenic responses. Angiogenesis. 2016; 19(1):95-106.
doi: 10.1007/s10456-015-9491-4 |
[38] |
Li M, van Esch BCAM, Wagenaar GTM, Garssen J, Folkerts G, Henricks PAJ. Pro- and anti-inflammatory effects of short chain fatty acids on immune and endothelial cells. Eur J Pharmacol. 2018; 831:52-59.
doi: S0014-2999(18)30260-7 pmid: 29750914 |
[39] |
Voltolini C, Battersby S, Etherington SL, Petraglia F, Norman JE, Jabbour HN. A novel antiinflammatory role for the short-chain fatty acids in human labor. Endocrinology. 2012; 153(1): 395-403.
doi: 10.1210/en.2011-1457 pmid: 22186417 |
[40] |
Li M, van Esch BCAM, Henricks PAJ, Garssen J, Folkerts G. Time and concentration dependent effects of short chain fatty acids on lipopolysaccharide- or tumor necrosis factor α-induced endothelial activation. Front Pharmacol. 2018; 9:233.
doi: 10.3389/fphar.2018.00233 pmid: 29615908 |
[41] | Trommer S, Leimert A, Bucher M, Schumann J. Impact of unsaturated fatty acids on cytokine-driven endothelial cell dysfunction. Int J Mol Sci. 2017; 18(12):E2739. |
[42] |
Lawton SK, Xu FY, Tran A, Wong E, Prakash A, Schumacher M, et al. N-arachidonoyl dopamine modulates acute systemic inflammation via nonhematopoietic TRPV1. J Immunol. 2017; 199(4):1465-75.
doi: 10.4049/jimmunol.1602151 pmid: 28701511 |
[43] | Rittchen S, Rohrer K, Platzer W, Knuplez E, Bärnthaler T, Marsh LM, et al. Prostaglandin D2 strengthens human endothelial barrier by activation of E-type receptor 4 Biochem Pharmacol. 2020;182:114277. |
[44] |
Wang YF, Hsu YJ, Wu HF, Lee GL, Yang YS, Wu JY, et al. Endothelium-derived 5-methoxytryptophan is a circulating anti-inflammatory molecule that blocks systemic inflammation. Circ Res. 2016; 119(2):222-36.
doi: 10.1161/CIRCRESAHA.116.308559 |
[45] |
Schoors S, Bruning U, Missiaen R, Queiroz KC, Borgers G, Elia I, et al. Fatty acid carbon is essential for dNTP synthesis in endothelial cells. Nature. 2015; 520(7546):192-7.
doi: 10.1038/nature14362 |
[46] | Kalucka J, Bierhansl L, Conchinha NV, Missiaen R, Elia I, Brüning U, et al.Quiescent endothelial cells upregulate fatty acid β-oxidation for vasculoprotection via redox homeostasis. Cell Metab. 2018;28(6):881-94.e13. |
[47] |
Gao XL, Li JQ, Dong YT, Cheng EJ, Gong JN, Qin YL, et al. Upregulation of microRNA-335-5p reduces inflammatory responses by inhibiting FASN through the activation of AMPK/ULK1 signaling pathway in a septic mouse model. Cytokine. 2018; 110:466-78.
doi: 10.1016/j.cyto.2018.05.016 |
[48] |
Apostolova N, Garcia-Bou R, Hernandez-Mijares A, Herance R, Rocha M, Victor VM. Mitochondrial antioxidants alleviate oxidative and nitrosative stress in a cellular model of sepsis. Pharm Res. 2011; 28(11):2910-9.
doi: 10.1007/s11095-011-0528-0 |
[49] |
Magalhaes-Novais S, Blecha J, Naraine R, Mikesova J, Abaffy P, Pecinova A, et al. Mitochondrial respiration supports autophagy to provide stress resistance during quiescence. Autophagy. 2022; 18(10):2409-26.
doi: 10.1080/15548627.2022.2038898 |
[50] |
Sun Z, Lan X, Ahsan A, Xi Y, Liu S, Zhang Z, et al. Phosphocreatine protects against LPS-induced human umbilical vein endothelial cell apoptosis by regulating mitochondrial oxidative phosphorylation. Apoptosis. 2016; 21(3):283-97.
doi: 10.1007/s10495-015-1210-5 pmid: 26708229 |
[51] |
Unterluggauer H, Mazurek S, Lener B, Hütter E, Eigenbrodt E, Zwerschke W, et al. Premature senescence of human endothelial cells induced by inhibition of glutaminase. Biogerontology. 2008; 9(4):247-59.
doi: 10.1007/s10522-008-9134-x pmid: 18317946 |
[52] |
Sen S, Roy S, Bandyopadhyay G, Scott B, Xiao DL, Ramadoss S, et al. γ-aminobutyric acid is synthesized and released by the endothelium: potential implications. Circ Res. 2016; 119(5):621-34.
doi: 10.1161/CIRCRESAHA.116.308645 pmid: 27354210 |
[53] | Durante W. The emerging role of l-glutamine in cardiovascular health and disease. Nutrients. 2019; 11(9): E2092. |
[54] |
Pan M, Wasa M, Ryan U, Souba W. Inhibition of pulmonary microvascular endothelial glutamine transport by glucocorticoids and endotoxin. JPEN J Parenter Enteral Nutr. 1995; 19(6):477-81.
pmid: 8748362 |
[55] | Abcouwer SF, Lukascewicz GC, Ryan US, Souba WW. Molecular regulation of lung endothelial glutamine synthetase expression. Surgery. 1995; 118(2):325-34;discussion335. |
[56] |
Leo F, Suvorava T, Heuser SK, Li JJ, LoBue A, Barbarino F, et al. Red blood cell and endothelial eNOS independently regulate circulating nitric oxide metabolites and blood pressure. Circulation. 2021; 144(11):870-89.
doi: 10.1161/CIRCULATIONAHA.120.049606 pmid: 34229449 |
[57] |
Kim JH, Bugaj LJ, Oh YJ, Bivalacqua TJ, Ryoo S, Soucy KG, et al. Arginase inhibition restores NOS coupling and reverses endothelial dysfunction and vascular stiffness in old rats. J Appl Physiol (1985). 2009; 107(4):1249-57.
doi: 10.1152/japplphysiol.91393.2008 |
[58] |
Lopez E, Fukuda S, Modis K, Fujiwara O, Enkhtaivan B, Trujillo-Abarca R, et al. Arginine vasopressin receptor 2 activation promotes microvascular permeability in sepsis. Pharmacol Res. 2021; 163:105272.
doi: 10.1016/j.phrs.2020.105272 |
[59] | Yeh CL, Pai MH, Shih YM, Shih JM, Yeh SL. Intravenous arginine administration promotes proangiogenic cells mobilization and attenuates lung injury in mice with polymicrobial sepsis. Nutrients. 2017; 9(5):E507. |
[60] | Wijnands KA, Hoeksema MA, Meesters DM, van den Akker NM, Molin DG, Briedé JJ, et al. Arginase-1 deficiency regulates arginine concentrations and NOS2-mediated NO production during endotoxemia. PLoS One. 2014;9(1):e86135. |
[61] | Yoo JW, Moon JY, Hong SB, Lim CM, Koh Y, Huh JW. Clinical significance of circulating endothelial cells in patients with severe sepsis or septic shock. Infect Dis (Lond). 2015; 47(6):393-8. |
[62] | Parra-Bonilla G, Alvarez DF, Al-Mehdi AB, Alexeyev M, Stevens T. Critical role for lactate dehydrogenase A in aerobic glycolysis that sustains pulmonary microvascular endothelial cell proliferation. Am J Physiol Lung Cell Mol Physiol. 2010; 299(4):L513-22. |
[1] | Hui Liu, Jie Hu, Jian-guo Xiao, Hong-jun Kang, Fei-hu Zhou. The procalcitonin-to-cortisol ratio is a potential prognostic predictor in sepsis with abdominal source: a retrospective observational study [J]. World Journal of Emergency Medicine, 2022, 13(6): 441-447. |
[2] | Ralph Bou Chebl, Nadim Kattouf, Mohamad Assaf, Saadeddine Haidar, Gilbert Abou Dagher, Sarah Abdul Nabi, Rana Bachir, Mazen El Sayed. Comparing the demographic data and outcomes of septic shock patients presenting to teaching or non-teaching metropolitan hospitals in the United States [J]. World Journal of Emergency Medicine, 2022, 13(6): 433-440. |
[3] | Shi-yuan Yu, Zeng-zheng Ge, Jun Xiang, Yan-xia Gao, Xin Lu, Joseph Harold Walline, Mu-bing Qin, Hua-dong Zhu, Yi Li. Is rosuvastatin protective against sepsis-associated encephalopathy? A secondary analysis of the SAILS trial [J]. World Journal of Emergency Medicine, 2022, 13(5): 367-372. |
[4] | A-ling Tang, Mei-jia Shen, Guo-qiang Zhang. Intestinal microcirculation dysfunction in sepsis: pathophysiology, clinical monitoring, and therapeutic interventions [J]. World Journal of Emergency Medicine, 2022, 13(5): 343-348. |
[5] | Xiao-kang Dai, Zhen-xing Ding, Yuan-yuan Tan, Hua-rui Bao, Dong-yao Wang, Hong Zhang. Neutrophils inhibit CD8+ T cells immune response by arginase-1 signaling in patients with sepsis [J]. World Journal of Emergency Medicine, 2022, 13(4): 266-273. |
[6] | Xuan Fu, Xue Lin, Samuel Seery, Li-na Zhao, Hua-dong Zhu, Jun Xu, Xue-zhong Yu. Speckle-tracking echocardiography for detecting myocardial dysfunction in sepsis and septic shock patients: A single emergency department study [J]. World Journal of Emergency Medicine, 2022, 13(3): 175-181. |
[7] | Mei-jia Shen, Li-chao Sun, Xiao-yu Liu, Meng-chen Xiong, Shan Li, A-ling Tang, Guo-qiang Zhang. Trichostatin A improves the inflammatory response and liver injury in septic mice through the FoxO3a/autophagy signaling pathway [J]. World Journal of Emergency Medicine, 2022, 13(3): 182-188. |
[8] | Hai Hu, Jing-yuan Jiang, Ni Yao. Comparison of different versions of the quick sequential organ failure assessment for predicting in-hospital mortality of sepsis patients: A retrospective observational study [J]. World Journal of Emergency Medicine, 2022, 13(2): 114-119. |
[9] | Li-wei Duan, Jin-long Qu, Jian Wan, Yong-hua Xu, Yi Shan, Li-xue Wu, Jin-hao Zheng, Wei-wei Jiang, Qi-tong Chen, Yan Zhu, Jian Zhou, Wen-bo Yu, Lei Pei, Xi Song, Wen-fang Li, Zhao-fen Lin. Effects of viral infection and microbial diversity on patients with sepsis: A retrospective study based on metagenomic next-generation sequencing [J]. World Journal of Emergency Medicine, 2021, 12(1): 29-35. |
[10] | Hai-jiang Zhou, Tian-fei Lan, Shu-bin Guo. Outcome prediction value of National Early Warning Score in septic patients with community-acquired pneumonia in emergency department: A single-center retrospective cohort study [J]. World Journal of Emergency Medicine, 2020, 11(4): 206-215. |
[11] | Yu-ming Wang, Yan-jun Zheng, Ying Chen, Yun-chuan Huang, Wei-wei Chen, Ran Ji, Li-li Xu, Zhi-tao Yang, Hui-qiu Sheng, Hong-ping Qu, En-qiang Mao, Er-zhen Chen. Effects of fluid balance on prognosis of acute respiratory distress syndrome patients secondary to sepsis [J]. World Journal of Emergency Medicine, 2020, 11(4): 216-222. |
[12] | Miao Yuan, Ding-yi Yan, Fang-shi Xu, Yi-di Zhao, Yang Zhou, Long-fei Pan. Effects of sepsis on hippocampal volume and memory function [J]. World Journal of Emergency Medicine, 2020, 11(4): 223-230. |
[13] | Wen-peng Yin, Jia-bao Li, Xiao-fang Zheng, Le An, Huan Shao, Chun-sheng Li. Effect of neutrophil CD64 for diagnosing sepsis in emergency department [J]. World Journal of Emergency Medicine, 2020, 11(2): 79-86. |
[14] | Shao-hua Liu, Huo-yan Liang, Hong-yi Li, Xian-fei Ding, Tong-wen Sun, Jing Wang. Effect of low high-density lipoprotein levels on mortality of septic patients: A systematic review and meta-analysis of cohort studies [J]. World Journal of Emergency Medicine, 2020, 11(2): 109-116. |
[15] | Yi-wen Fan, Shao-wei Jiang, Jia-meng Chen, Hui-qi Wang, Dan Liu, Shu-ming Pan, Cheng-jin Gao. A pulmonary source of infection in patients with sepsis-associated acute kidney injury leads to a worse outcome and poor recovery of kidney function [J]. World Journal of Emergency Medicine, 2020, 11(1): 18-26. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||