World Journal of Emergency Medicine ›› 2023, Vol. 14 ›› Issue (6): 434-441.doi: 10.5847/wjem.j.1920-8642.2023.101
• Original Article • Previous Articles Next Articles
Jiale Yang1,2, Fanghe Gong3, Xuezhi Shi2, Fanfan Wang2, Jing Qian1,2, Lulu Wan1,2, Yi Chen4, Huaisheng Chen5, Huasheng Tong1,2()
Received:
2023-04-07
Accepted:
2023-07-28
Online:
2023-11-10
Published:
2023-11-01
Contact:
Huasheng Tong, Email: Jiale Yang, Fanghe Gong, Xuezhi Shi, Fanfan Wang, Jing Qian, Lulu Wan, Yi Chen, Huaisheng Chen, Huasheng Tong. A nomogram based on lymphocyte percentage for predicting hospital mortality in exertional heatstroke patients: a 13-year retrospective study[J]. World Journal of Emergency Medicine, 2023, 14(6): 434-441.
Add to citation manager EndNote|Ris|BibTeX
URL: http://wjem.com.cn/EN/10.5847/wjem.j.1920-8642.2023.101
Table 1.
Baseline characteristics of exertional heatstroke (EHS) patients in survival and non-survival groups
Variables | Total (n=156) | Survivors (n=141) | Non-survivors (n=15) | P-value |
---|---|---|---|---|
Age, years | 29 (21-48) | 29 (21-47) | 28 (21-49) | 0.890 |
Gender | 1.000 | |||
Male | 149 (95.5) | 134 (95.0) | 15 (100.0) | |
Female | 7 (4.5) | 7 (5.0) | 0 (0.0) | |
Onset month | 0.557 | |||
June | 41 (26.3) | 38 (27.0) | 3( 20.0) | |
July | 38 (24.4) | 36 (25.5) | 2 (13.3) | |
August | 30 (19.2) | 26 (18.4) | 4 (26.7) | |
Other | 47 (30.1) | 41 (29.1) | 6 (40.0) | |
Admission temperature, ℃ | 37.2 (36.8-38.0) | 37.1 (36.7-38.0) | 37.8 (37.0-39.5) | 0.015 |
HR, beats/min | 86 (75-114) | 84 (74-103) | 121 (103-127) | <0.001 |
MAP, mmHg | 87±15 | 87±14 | 87±23 | 0.949 |
Lym D1, ×109/L | 1.27 (0.69-2.11) | 1.37 (0.78-2.15) | 0.40 (0.23-1.37) | 0.002 |
Lym D3, ×109/L | 1.33±0.73 | 1.44±0.68 | 0.36±0.27 | <0.001 |
Lym% D1 | 10.6 (5.0-23.6) | 11.4 (5.7-24.0) | 4.1 (2.2-16.1) | 0.006 |
Lym% D3 | 16.4±11.0 | 17.7±10.7 | 3.4±2.2 | <0.001 |
Neu D1, ×109/L | 8.86 (5.95-12.58) | 8.94 (5.97-12.57) | 8.59 (5.92-13.08) | 0.993 |
Neu D3, ×109/L | 6.68 (4.34-9.37) | 6.20 (4.32-8.77) | 9.66 (6.88-13.43) | 0.002 |
Neu% D1 | 83.8 (71.4-88.8) | 83.0 (70.6-87.8) | 91.3 (77.3-93.6) | 0.007 |
Neu% D3 | 78.1 (67.0-87.1) | 75.7 (65.8-85.4) | 94.8 (87.4-96.3) | <0.001 |
Mono D1, ×109/L | 0.49 (0.30-0.78) | 0.49 (0.32-0.76) | 0.48 (0.24-0.80) | 0.395 |
Mono D3, ×109/L | 0.44 (0.35-0.60) | 0.46 (0.35-0.61) | 0.40 (0.13-0.53) | 0.059 |
Mono% D1 | 4.6 (3.2-6.3) | 4.6 (3.3-6.3) | 4.9 (2.0-6.0) | 0.672 |
Mono% D3 | 5.5 (4.1-6.9) | 5.6 (4.2-6.8) | 2.1 (0.9-7.6) | 0.010 |
WBC D1, ×109/L | 11.25 (8.21-15.35) | 11.36 (8.24-15.50) | 9.81 (7.60-14.08) | 0.482 |
WBC D3, ×109/L | 8.72 (6.52-10.91) | 8.60 (6.38-10.73) | 10.23 (8.44-13.95) | 0.051 |
Hb, g/L | 139±28 | 142±26 | 113±36 | 0.007 |
HCT, % | 41.0±7.8 | 41.8±7.2 | 33.7±10.1 | 0.008 |
Plt, ×109/L | 178 (90-232) | 185 (112-235) | 65 (33-92) | <0.001 |
APTT, s | 32.9 (25.8-40.4) | 32.3 (25.7-39.3) | 52.0 (30.7-99.0) | 0.013 |
PT, s | 14.7 (12.6-18.4) | 14.3 (12.5-17.6) | 22.9 (15.2-38.4) | <0.001 |
INR | 1.19 (1.06-1.56) | 1.16 (1.06-1.47) | 2.09 (1.32-3.81) | <0.001 |
D-dimer, μg/mL | 0.94 (0.39-5.38) | 0.81 (0.36-3.52) | 9.49 (4.41-20.0) | <0.001 |
Fib, g/L | 2.4 (2.0-3.0) | 2.5 (2.1-3.0) | 1.8 (1.0-3.2) | 0.009 |
Scr, μmol/L | 132 (98-180) | 130 (95-172) | 184 (153-258) | 0.005 |
AST, U/L | 63 (28-172) | 51 (28-130) | 260 (86-2,095) | 0.001 |
CK, U/L | 595 (242-2,125) | 521 (239-1,249) | 4,637 (985-7,021) | 0.002 |
DIC | 29 (18.6) | 19 (13.5) | 10 (66.7) | <0.001 |
Rhabdomyolysis | 55 (35.3) | 44 (31.2) | 11 (73.3) | 0.001 |
Vasoactive drugs | 15 (9.6) | 9 (6.4) | 6 (40.0) | <0.001 |
Underlying diseases* | 30 (19.2) | 26 (18.4) | 4 (26.7) | 0.672 |
GCS score | 15 (7-15) | 15 (8-15) | 6 (3-8) | <0.001 |
SIRS score | 1 (1-2) | 1 (0-2) | 2 (2-3) | 0.002 |
APACHE II score | 9 (5-17) | 7 (5-15) | 20 (17-27) | <0.001 |
SOFA score | 4 (2-7) | 3 (2-6) | 9 (7-11) | <0.001 |
ISTH score | 2 (0-4) | 2 (0-3) | 5 (3-7) | <0.001 |
Length of ICU stay, d | 4 (2-7) | 4 (2-7) | 10 (5-15) | <0.001 |
Length of hospital stay, d | 8 (4-15) | 8 (4-15) | 11 (7-17) | 0.182 |
Table 2.
Univariate logistic analyses of factors associated with hospital mortality in EHS patients
Variables | OR | 95%CI | P-value |
---|---|---|---|
Admission temperature | 1.602 | 1.131-2.271 | 0.008 |
HR | 1.033 | 1.015-1.052 | <0.001 |
Hb | 0.966 | 0.947-0.985 | <0.001 |
HCT | 0.888 | 0.830-0.949 | <0.001 |
Plt | 0.986 | 0.978-0.994 | <0.001 |
APTT | 1.046 | 1.022-1.069 | <0.001 |
D-dimer | 1.047 | 1.011-1.084 | 0.011 |
Rhabdomyolysis | 6.062 | 1.829-20.099 | 0.003 |
DIC | 12.842 | 3.957-41.682 | <0.001 |
Vasoactive drug | 9.778 | 2.846-33.589 | <0.001 |
GCS score | 0.775 | 0.678-0.886 | <0.001 |
Lym D3 | 0.637 | 0.498-0.816 | <0.001 |
Lym% D1 | 0.386 | 0.168-0.890 | 0.026 |
Lym% D3 | 0.014 | 0.002-0.107 | <0.001 |
Neu D3 | 1.175 | 1.053-1.310 | 0.004 |
Neu% D1 | 1.069 | 1.003-1.140 | 0.041 |
Neu% D3 | 1.282 | 1.134-1.450 | <0.001 |
Mono% D3 | 0.755 | 0.586-0.973 | 0.030 |
Table 4.
ROC curve comparison of the prediction model (HCT+Lym% D3) with SOFA, APACHE II, and SIRS scores
Models | AIC | AUC | 95%CI | P-value | Cut-off | SEN (%) | SPE (%) | YI |
---|---|---|---|---|---|---|---|---|
HCT+Lym% D3 | 55.711 | 0.948 | 0.900-0.977 | <0.0001 | 0.097 | 100.00 | 83.69 | 0.8369 |
SOFA | 69.958 | 0.912 | 0.856-0.952 | <0.0001 | 6 | 93.33 | 81.56 | 0.7489 |
APACHE II | 79.930 | 0.838 | 0.770-0.892 | <0.0001 | 12 | 93.33 | 67.38 | 0.6071 |
SIRS | 93.560 | 0.737 | 0.660-0.804 | 0.0001 | 1 | 86.67 | 60.28 | 0.4695 |
1 | Lipman GS, Gaudio FG, Eifling KP, Ellis MA, Otten EM, Grissom CK. Wilderness medical society clinical practice guidelines for the prevention and treatment of heat illness: 2019 update. Wilderness Environ Med. 2019 ;30(4S): S33-S46. |
2 |
Epstein Y, Yanovich R. Heatstroke. N Engl J Med. 2019; 380(25): 2449-59.
doi: 10.1056/NEJMra1810762 |
3 |
Misset B, De Jonghe B, Bastuji-Garin S, Gattolliat O, Boughrara E, Annane D, et al. Mortality of patients with heatstroke admitted to intensive care units during the 2003 heat wave in France: a national multiple-center risk-factor study. Crit Care Med. 2006; 34(4): 1087-92.
doi: 10.1097/01.CCM.0000206469.33615.02 pmid: 16484920 |
4 |
Hajat S, Vardoulakis S, Heaviside C, Eggen B. Climate change effects on human health: projections of temperature-related mortality for the UK during the 2020s, 2050s and 2080s. J Epidemiol Community Health. 2014; 68(7): 641-8.
doi: 10.1136/jech-2013-202449 |
5 | Lin MT, Liu HH, Yang YL. Involvement of interleukin-1 receptor mechanisms in development of arterial hypotension in rat heatstroke. Am J Physiol. 1997 ;273(4): H2072-H2077. |
6 |
Liu CC, Chien CH, Lin MT. Glucocorticoids reduce interleukin-1 concentration and result in neuroprotective effects in rat heatstroke. J Physiol. 2000; 527(Pt 2): 333-43.
doi: 10.1111/tjp.2000.527.issue-2 |
7 |
Chen CM, Hou CC, Cheng KC, Tian RL, Chang CP, Lin MT. Activated protein C therapy in a rat heat stroke model. Crit Care Med. 2006; 34(7): 1960-6.
doi: 10.1097/01.CCM.0000224231.01533.B1 |
8 |
Murray KO, Brant JO, Iwaniec JD, Sheikh LH, de Carvalho L, Garcia CK, et al. Exertional heat stroke leads to concurrent long-term epigenetic memory, immunosuppression and altered heat shock response in female mice. J Physiol. 2021; 599(1): 119-41.
doi: 10.1113/tjp.v599.1 |
9 |
Snipe RMJ, Khoo A, Kitic CM, Gibson PR, Costa RJS. The impact of exertional-heat stress on gastrointestinal integrity, gastrointestinal symptoms, systemic endotoxin and cytokine profile. Eur J Appl Physiol. 2018; 118(2): 389-400.
doi: 10.1007/s00421-017-3781-z pmid: 29234915 |
10 |
Tong HS, Wan P, Zhang XQ, Duan PK, Tang YQ, Chen Y, et al. Vascular endothelial cell injury partly induced by mesenteric lymph in heat stroke. Inflammation. 2014; 37(1): 27-34.
doi: 10.1007/s10753-013-9708-x pmid: 23912649 |
11 |
Leon LR, Helwig BG. Heat stroke: role of the systemic inflammatory response. J Appl Physiol (1985). 2010; 109(6): 1980-8.
doi: 10.1152/japplphysiol.00301.2010 |
12 |
Woods SE. Immunosuppression is associated with epigenetic remodelling in a murine model of exertional heat stroke. J Physiol. 2021; 599(5): 1373-4.
doi: 10.1113/tjp.v599.5 |
13 |
Zhang Y, Deng X, Zhang J, Zhang L, Akram Z, Zhang B, et al. A potential driver of disseminated intravascular coagulation in heat stroke mice: neutrophil extracellular traps. Int J Environ Res Public Health. 2022; 19(19): 12448.
doi: 10.3390/ijerph191912448 |
14 |
Hifumi T, Kondo Y, Shimizu K, Miyake Y. Heat stroke. J Intensive Care. 2018; 6: 30.
doi: 10.1186/s40560-018-0298-4 pmid: 29850022 |
15 |
Cabral BMI, Edding SN, Portocarrero JP, Lerma EV. Rhabdomyolysis. Dis Mon. 2020; 66(8): 101015.
doi: 10.1016/j.disamonth.2020.101015 |
16 |
Taylor FB Jr, Jr T, Hoots WK, Wada H, Levi M, Scientific Subcommittee on Disseminated Intravascular Coagulation (DIC) of the International Society on Thrombosis and Haemostasis (ISTH). Towards definition, clinical and laboratory criteria, and a scoring system for disseminated intravascular coagulation. Thromb Haemost. 2001; 86(5): 1327-30.
doi: 10.1055/s-0037-1616068 |
17 |
Girardot T, Rimmelé T, Venet F, Monneret G. Apoptosis-induced lymphopenia in sepsis and other severe injuries. Apoptosis. 2017; 22(2): 295-305.
doi: 10.1007/s10495-016-1325-3 pmid: 27812767 |
18 |
Drewry AM, Samra N, Skrupky LP, Fuller BM, Compton SM, Hotchkiss RS. Persistent lymphopenia after diagnosis of sepsis predicts mortality. Shock. 2014; 42(5): 383-91.
doi: 10.1097/SHK.0000000000000234 pmid: 25051284 |
19 |
Heffernan DS, Monaghan SF, Thakkar RK, Machan JT, Cioffi WG, Ayala A. Failure to normalize lymphopenia following trauma is associated with increased mortality, independent of the leukocytosis pattern. Crit Care. 2012; 16(1): R12.
doi: 10.1186/cc11157 |
20 | Ji JJ, Su P, Lin WY, Ouyang LF, Wang CL, Jia JX, et al. Immune cells characteristics and their prognostic effects in exertional heatstroke patients: a retrospective cohort study. Front Med (Lausanne). 2022; 9: 867774. |
21 |
Frazier WJ, Hall MW. Immunoparalysis and adverse outcomes from critical illness. Pediatr Clin North Am. 2008; 55(3): 647-68, xi.
doi: 10.1016/j.pcl.2008.02.009 |
22 |
Tschoeke SK, Ertel W. Immunoparalysis after multiple trauma. Injury. 2007; 38(12): 1346-57.
pmid: 18048039 |
23 |
Bruse N, Leijte GP, Pickkers P, Kox M. New frontiers in precision medicine for sepsis-induced immunoparalysis. Expert Rev Clin Immunol. 2019; 15(3): 251-63.
doi: 10.1080/1744666X.2019.1562336 |
24 |
Yuan FF, Cai JZ, Wu JF, Tang YT, Zhao K, Liang F, et al. Z-DNA binding protein 1 promotes heatstroke-induced cell death. Science. 2022; 376(6593): 609-15.
doi: 10.1126/science.abg5251 pmid: 35511979 |
25 |
Roberts GT, Ghebeh H, Chishti MA, Al-Mohanna F, El-Sayed R, Al-Mohanna F, et al. Microvascular injury, thrombosis, inflammation, and apoptosis in the pathogenesis of heatstroke: a study in baboon model. Arterioscler Thromb Vasc Biol. 2008; 28(6): 1130-6.
doi: 10.1161/ATVBAHA.107.158709 pmid: 18388331 |
26 |
Voll RE, Herrmann M, Roth EA, Stach C, Kalden JR, Girkontaite I. Immunosuppressive effects of apoptotic cells. Nature. 1997; 390(6658): 350-1.
doi: 10.1038/37022 |
27 |
Chalya PL, Kanumba ES, McHembe M. Etiological spectrum and treatment outcome of obstructive jaundice at a university teaching hospital in northwestern Tanzania: a diagnostic and therapeutic challenges. BMC Res Notes. 2011; 4: 147.
doi: 10.1186/1756-0500-4-147 pmid: 21605428 |
28 |
Liu T, Han S, Pang M, Li J, Wang J, Luo X, et al. Cerium oxide nanoparticles protect red blood cells from hyperthermia-induced damages. J Biomater Appl. 2021; 36(1): 36-44.
doi: 10.1177/0885328220979091 pmid: 33353468 |
29 |
Danesh A, Inglis HC, Jackman RP, Wu SQ, Deng XT, Muench MO, et al. Exosomes from red blood cell units bind to monocytes and induce proinflammatory cytokines, boosting T-cell responses in vitro. Blood. 2014; 123(5): 687-96.
doi: 10.1182/blood-2013-10-530469 pmid: 24335232 |
[1] | Yue Li, Yong-peng Xie, Xiao-min Li, Tao Lu. Effects of early standardized enteral nutrition on preventing acute muscle loss in the acute exacerbation of chronic obstructive pulmonary disease patients with mechanical ventilation [J]. World Journal of Emergency Medicine, 2023, 14(3): 193-197. |
[2] | Xiao-guang Zhu, Jia-mei Jiang, Yong-xia Li, Jing Gao, Wei Wu, Qi-ming Feng. Development and validation of a nomogram for predicting survival in patients with acute pancreatitis [J]. World Journal of Emergency Medicine, 2023, 14(1): 44-48. |
[3] | Jia-ying Tang, Xiu-qin Feng, Xiao-xia Huang, Yu-ping Zhang, Zhi-ting Guo, Lan Chen, Hao-tian Chen, Xiao-xiao Ying. Development and validation of a predictive model for patients with post-extubation dysphagia [J]. World Journal of Emergency Medicine, 2023, 14(1): 49-55. |
[4] | Gan-nan Wang, Zhong-man Zhang, Wen Chen, Xiao-quan Xu, Jin-song Zhang. Timing of brain computed tomography for predicting neurological prognosis in comatose cardiac arrest survivors: a retrospective observational study [J]. World Journal of Emergency Medicine, 2022, 13(5): 349-354. |
[5] | Fei Shao, Xian Shi, Shu-hua Huo, Qing-yu Liu, Ji-xue Shi, Jian Kang, Ping Gong, Sheng-tao Yan, Guo-xing Wang, Li-jie Qin, Fei Wang, Ke Feng, Feng-ying Chen, Yong-jie Yin, Tao Ma, Yan Li, Yang Wu, Hao Cui, Chang-xiao Yu, Song Yang, Wei Gan, Sai Wang, Liu-ye-zi Du, Ming-chen Zhao, Zi-ren Tang, Shen Zhao. Development and evaluation of a predictive nomogram for survival in heat stroke patients: a retrospective cohort study [J]. World Journal of Emergency Medicine, 2022, 13(5): 355-360. |
[6] | Yu-ming Wang, Yan-jun Zheng, Ying Chen, Yun-chuan Huang, Wei-wei Chen, Ran Ji, Li-li Xu, Zhi-tao Yang, Hui-qiu Sheng, Hong-ping Qu, En-qiang Mao, Er-zhen Chen. Effects of fluid balance on prognosis of acute respiratory distress syndrome patients secondary to sepsis [J]. World Journal of Emergency Medicine, 2020, 11(4): 216-222. |
[7] | Wen-peng Yin, Jia-bao Li, Xiao-fang Zheng, Le An, Huan Shao, Chun-sheng Li. Effect of neutrophil CD64 for diagnosing sepsis in emergency department [J]. World Journal of Emergency Medicine, 2020, 11(2): 79-86. |
[8] | Shahin Shadnia, Nasim Zaman, Hossein Hassanian-Moghaddam, Hamed Shafaroodi, Mina Padandar, Mohammad Hasan Rezaeizadeh. Prognostic value of cortisol and thyroid function tests in poisoned patients admitted to toxicology ICU [J]. World Journal of Emergency Medicine, 2018, 9(1): 51-55. |
[9] | Xue-zhong Xing, Yong Gao, Hai-jun Wang, Shi-ning Qu, Chu-lin Huang, Hao Zhang, Hao Wang, Qing-ling Xiao, Ke-lin Sun. Effect of sedation on short-term and long-term outcomes of critically ill patients with acute respiratory insufficiency [J]. World Journal of Emergency Medicine, 2015, 6(2): 147-152. |
[10] | Wei-ping Sun, Guang-xiong Yuan, Yan-juan Hu, Li-zhen Liao, Lin Fu. Effect of low-dose glucocorticoid on corticosteroid insufficient patients with acute exacerbation of chronic obstructive pulmonary disease [J]. World Journal of Emergency Medicine, 2015, 6(1): 34-39. |
[11] | Kun Chen, Qiu-xiang Zhou, Hong-wei Shan, Wen-fang Li, Zhao-fen Lin. Prognostic value of CD4+CD25+ Tregs as a valuable biomarker for patients with sepsis in ICU [J]. World Journal of Emergency Medicine, 2015, 6(1): 40-43. |
[12] | Lin Dou, Hong-mei Gao, Ling Lu, Wen-xiu Chang. Bispectral index in predicting the prognosis of patients with coma in intensive care unit [J]. World Journal of Emergency Medicine, 2014, 5(1): 53-56. |
[13] | Hai-yan Zhang, Cai-jun Wu, Chun-sheng Li. Glycated hemoglobin A1C and diabetes mellitus in critically ill patients [J]. World Journal of Emergency Medicine, 2013, 4(3): 201-204. |
[14] | Xue-zhong Xing, Yong Gao, Hai-jun Wang, Quan-hui Yang, Chu-lin Huang, Shi-ning Qu, Hao Zhang, Hao Wang, Qing-ling Xiao, Ke-lin Sun. Risk factors and prognosis of critically ill cancer patients with postoperative acute respiratory insufficiency [J]. World Journal of Emergency Medicine, 2013, 4(1): 43-47. |
[15] | Chun-tao Wu, Zhong-hua Wang, Zhu-qin Li, Lan-feng Wang. Effect of spironolactone on cardiac remodeling after acute myocardial infarction [J]. World Journal of Emergency Medicine, 2013, 4(1): 48-53. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||