1 |
Evans L, Rhodes A, Alhazzani W, Antonelli M, Coopersmith CM, French C, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Crit Care Med. 2021; 49(11): e1063-e1143.
doi: 10.1097/CCM.0000000000005337
pmid: 34605781
|
2 |
Hu QH, Hao CP, Tang SJ. From sepsis to acute respiratory distress syndrome (ARDS): emerging preventive strategies based on molecular and genetic researches. Biosci Rep. 2020; 40(5): BSR20200830
doi: 10.1042/BSR20200830
|
3 |
Sang AM, Wang Y, Wang S, Wang QY, Wang XH, Li XY, et al. Quercetin attenuates sepsis-induced acute lung injury via suppressing oxidative stress-mediated ER stress through activation of SIRT1/AMPK pathways. Cell Signal. 2022; 96: 110363.
doi: 10.1016/j.cellsig.2022.110363
|
4 |
Wang XF, Song SD, Li YJ, Hu ZQ, Zhang ZW, Yan CG, et al. Protective effect of quercetin in LPS-induced murine acute lung injury mediated by cAMP-epac pathway. Inflammation. 2018; 41(3): 1093-103.
doi: 10.1007/s10753-018-0761-3
|
5 |
Deng SH, Li J, Li L, Lin S, Yang YY, Liu T, et al. Quercetin alleviates lipopolysaccharide-induced acute lung injury by inhibiting ferroptosis via the Sirt1/Nrf2/Gpx4 pathway. Int J Mol Med. 2023; 52(6): 118.
doi: 10.3892/ijmm
|
6 |
Sul OJ, Ra SW. Quercetin prevents LPS-induced oxidative stress and inflammation by modulating NOX2/ROS/NF-κB in lung epithelial cells. Molecules. 2021; 26(22): 6949.
doi: 10.3390/molecules26226949
|
7 |
Zhao L, Zhang H, Li N, Chen JM, Xu H, Wang YJ, et al. Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula. J Ethnopharmacol. 2023; 309: 116306.
doi: 10.1016/j.jep.2023.116306
|
8 |
Zhang SJ, Hu DS, Zhuo YZ, Cui LZ, Li DH, Zhang LQ, et al. Protective effect of liriodendrin on IgG immune complex-induced acute lung injury via inhibiting SRC/STAT3/MAPK signaling pathway: a network pharmacology research. Naunyn Schmiedebergs Arch Pharmacol. 2023; 396(11): 3269-83.
doi: 10.1007/s00210-023-02534-1
|
9 |
Wang X, Shen YH, Wang SW, Li SL, Zhang WL, Liu XF, et al. PharmMapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res. 2017; 45(W1): W356-W360.
|
10 |
Daina A, Michielin O, Zoete V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019; 47(W1): W357-W364.
doi: 10.1093/nar/gkz382
|
11 |
Davis AP, Grondin CJ, Johnson RJ, Sciaky D, Wiegers J, Wiegers TC, et al. Comparative Toxicogenomics Database (CTD): update 2021. Nucleic Acids Res. 2021; 49(D1): D1138-D1143.
doi: 10.1093/nar/gkaa891
pmid: 33068428
|
12 |
Consortium U. UniProt: a hub for protein information. Nucleic Acids Res. 2015; 43(Database issue): D204-D212.
doi: 10.1093/nar/gku989
|
13 |
Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, et al. The GeneCards suite: from gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatics. 2016; 54: 1.30.1-1.30.33.
|
14 |
Amberger JS, Hamosh A. Searching online Mendelian inheritance in man (OMIM): a knowledgebase of human genes and genetic phenotypes. Curr Protoc Bioinformatics. 2017; 58:1.2.1-1.2.12.
|
15 |
Li YH, Yu CY, Li XX, Zhang P, Tang J, Yang QX, et al. Therapeutic target database update 2018: enriched resource for facilitating bench-to-clinic research of targeted therapeutics. Nucleic Acids Res. 2018; 46(D1): D1121-D1127.
|
16 |
Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015; 43(Database issue): D447-D452.
doi: 10.1093/nar/gku1003
|
17 |
Sherman BT, Hao M, Qiu J, Jiao XL, Baseler MW, Lane HC, et al. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022; 50(W1): W216-W221.
doi: 10.1093/nar/gkac194
pmid: 35325185
|
18 |
Hähnke VD, Kim S, Bolton EE. PubChem chemical structure standardization. J Cheminform. 2018; 10(1): 36.
doi: 10.1186/s13321-018-0293-8
|
19 |
Liu Y, Grimm M, Dai WT, Hou MC, Xiao ZX, Cao Y. CB-Dock: a web server for cavity detection-guided protein-ligand blind docking. Acta Pharmacol Sin. 2020; 41(1): 138-44.
doi: 10.1038/s41401-019-0228-6
pmid: 31263275
|
20 |
Tang L, Zhang S, Zhang M, Wang PJ, Liang GY, Gao XL. Analysis of protective effects of Rosa Roxburghii Tratt fruit polyphenols on lipopolysaccharide-induced acute lung injury through network pharmacology and metabolomics. Food Sci Nutr. 2022; 10(12): 4258-69.
doi: 10.1002/fsn3.3019
pmid: 36514748
|
21 |
Bos LDJ, Laffey JG, Ware LB, Heijnen NFL, Sinha P, Patel B, et al. Towards a biological definition of ARDS: are treatable traits the solution? Intensive Care Med Exp. 2022; 10(1): 8.
doi: 10.1186/s40635-022-00435-w
pmid: 35274164
|
22 |
Gill SE, Taneja R, Rohan M, Wang LF, Mehta S. Pulmonary microvascular albumin leak is associated with endothelial cell death in murine sepsis-induced lung injury in vivo. PLoS One. 2014; 9(2): e88501.
doi: 10.1371/journal.pone.0088501
|
23 |
Zhang ES, Wang J, Chen Q, Wang ZH, Li D, Jiang N, et al. Artesunate ameliorates sepsis-induced acute lung injury by activating the mTOR/AKT/PI3K axis. Gene. 2020; 759: 144969.
doi: 10.1016/j.gene.2020.144969
|
24 |
Zhou HC, Wang XH, Zhang B. Depression of lncRNA NEAT1 antagonizes LPS-evoked acute injury and inflammatory response in alveolar epithelial cells via HMGB1-RAGE signaling. Mediators Inflamm. 2020; 2020: 8019467.
|
25 |
Girardot T, Rimmelé T, Venet F, Monneret G. Apoptosis-induced lymphopenia in sepsis and other severe injuries. Apoptosis. 2017; 22(2): 295-305.
doi: 10.1007/s10495-016-1325-3
pmid: 27812767
|
26 |
Li XY, Jamal M, Guo PP, Jin Z, Zheng F, Song XM, et al. Irisin alleviates pulmonary epithelial barrier dysfunction in sepsis-induced acute lung injury via activation of AMPK/SIRT1 pathways. Biomedecine Pharmacother. 2019; 118: 109363.
|
27 |
Xia TY, Guo JN, Zhang BM, Song CX, Zhao QY, Cui BB, et al. Bisphenol A promotes the progression of colon cancer through dual-targeting of NADPH oxidase and mitochondrial electron-transport chain to produce ROS and activating HIF-1α/VEGF/PI3K/AKT axis. Front Endocrinol. 2022; 13: 933051.
doi: 10.3389/fendo.2022.933051
|
28 |
Gong HK, Chen Y, Chen ML, Li JK, Zhang H, Yan SJ, et al. Advanced development and mechanism of sepsis-related acute respiratory distress syndrome. Front Med. 2022; 9: 1043859.
doi: 10.3389/fmed.2022.1043859
|
29 |
He SJ, Fan CY, Ji YM, Su Q, Zhao F, Xie CY, et al. SENP3 facilitates M1 macrophage polarization via the HIF-1α/PKM2 axis in lipopolysaccharide-induced acute lung injury. Innate Immun. 2023; 29(1-2): 25-34.
doi: 10.1177/17534259231166212
|
30 |
Zhang HL, Zhang XD, Ling CX, Liu CG, Hua SD, Xiong ZY, et al. EGFR-TNFR1 pathway in endothelial cell facilitates acute lung injury by NF-κB/MAPK-mediated inflammation and RIP3-dependent necroptosis. Int Immunopharmacol. 2023; 117: 109902.
doi: 10.1016/j.intimp.2023.109902
|
31 |
Zhai ZQ, Fu Y, Zhang XY, Zhang Y, Zhou C, Huang XJ, et al. Liposomes loaded with quercetin for resolution of lung inflammation in a lipopolysaccharide-induced mouse model of sepsis. Biomed Mater. 2023; 18(3): 035004.
doi: 10.1088/1748-605X/acc0bc
|
32 |
Chen LL, Song C, Zhang Y, Li Y, Zhao YH, Lin FY, et al. Quercetin protects against LPS-induced lung injury in mice via SIRT1-mediated suppression of PKM2 nuclear accumulation. Eur J Pharmacol. 2022; 936: 175352.
doi: 10.1016/j.ejphar.2022.175352
|