1 |
Wang LY, Cao XH, Shi LK, Ma ZZ, Wang Y, Liu Y. Risk factors for intracranial infection after craniotomy: a case-control study. Brain Behav. 2020; 10(7): e01658.
|
2 |
Liu J, Meng X, Wang J, Wu K, Xiao Y, Hong Z, et al. Oral bacteria-associated liver abscess in conjunction with pulmonary arteriovenous fistula. World J Emerg Med. 2024; 15(6):511-3.
|
3 |
Antonello RM, Riccardi N. How we deal with Staphylococcus aureus (MSSA, MRSA) central nervous system infections. Front Biosci (Schol Ed). 2022; 14(1): 1.
doi: 10.31083/j.fbs1401001
pmid: 35320912
|
4 |
Bahubali VKH, Vijayan P, Bhandari V, Siddaiah N, Srinivas D. Methicillin-resistant Staphylococcus aureus intracranial abscess: an analytical series and review on molecular, surgical and medical aspects. Indian J Med Microbiol. 2018; 36(1): 97-103.
|
5 |
Kumari VHB, Babu AR, Srinivas D, Siddaiah N, Somanna S. Methicillin-resistant Staphylococcus aureus central nervous system infections: analysis and outcome. Br J Neurosurg. 2015; 29(3): 413-8.
doi: 10.3109/02688697.2015.1006168
pmid: 25688639
|
6 |
Liu C, Bayer A, Cosgrove SE, Daum RS, Fridkin SK, Gorwitz RJ, et al. Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis. 2011; 52(3): e18-e55.
|
7 |
Benz F, Liebner S. Structure and function of the blood-brain barrier (BBB). Handb Exp Pharmacol. 2022; 273: 3-31.
|
8 |
Obermeier B, Daneman R, Ransohoff RM. Development, maintenance and disruption of the blood-brain barrier. Nat Med. 2013; 19(12): 1584-96.
doi: 10.1038/nm.3407
pmid: 24309662
|
9 |
McCarty DM, DiRosario J, Gulaid K, Muenzer J, Fu H. Mannitol-facilitated CNS entry of rAAV2 vector significantly delayed the neurological disease progression in MPS IIIB mice. Gene Ther. 2009; 16(11): 1340-52.
doi: 10.1038/gt.2009.85
pmid: 19587708
|
10 |
Malik JR, Podany AT, Khan P, Shaffer CL, Siddiqui JA, Baranowska-Kortylewicz J, et al. Chemotherapy in pediatric brain tumor and the challenge of the blood-brain barrier. Cancer Med. 2023; 12(23): 21075-96.
|
11 |
Ogawa K, Kato N, Yoshida M, Hiu T, Matsuo T, Mizukami S, et al. Focused ultrasound/microbubbles-assisted BBB opening enhances LNP-mediated mRNA delivery to brain. J Control Release. 2022; 348: 34-41.
|
12 |
Chen K, Wu YX, Wang Q, Wang JQ, Li XG, Zhao ZG, et al. The methodology and pharmacokinetics study of intraventricular administration of vancomycin in patients with intracranial infections after craniotomy. J Crit Care. 2015; 30(1): 218.e1-5.
|
13 |
Zhang Q, Chen HX, Zhu C, Chen FZ, Sun SH, Liang N, et al. Efficacy and safety of intrathecal meropenem and vancomycin in the treatment of postoperative intracranial infection in patients with severe traumatic brain injury. Exp Ther Med. 2019; 17(6): 4605-9.
doi: 10.3892/etm.2019.7503
pmid: 31086592
|
14 |
Lombardo SM, Schneider M, Türeli AE, Türeli NG. Key for crossing the BBB with nanoparticles: the rational design. Beilstein J Nanotechnol. 2020; 11: 866-83.
|
15 |
Pan GY, Liu XD, Liu GQ. Intracarotid infusion of hypertonic mannitol changes permeability of blood-brain barrier to methotrexate in rats. Acta Pharmacol Sin. 2000; 21(7): 613-6.
pmid: 11360668
|
16 |
Fortin D, Desjardins A, Benko A, Niyonsega T, Boudrias M. Enhanced chemotherapy delivery by intraarterial infusion and blood-brain barrier disruption in malignant brain tumors: the Sherbrooke experience. Cancer. 2005; 103(12): 2606-15.
doi: 10.1002/cncr.21112
pmid: 15880378
|
17 |
Linville RM, DeStefano JG, Sklar MB, Chu CY, Walczak P, Searson PC. Modeling hyperosmotic blood-brain barrier opening within human tissue-engineered in vitro brain microvessels. J Cereb Blood Flow Metab. 2020; 40(7): 1517-32.
|
18 |
Ballermann BJ, Nyström J, Haraldsson B. The glomerular endothelium restricts albumin filtration. Front Med (Lausanne). 2021; 8: 766689.
|
19 |
Cosgun ZC, Fels B, Kusche-Vihrog K. Nanomechanics of the endothelial glycocalyx: from structure to function. Am J Pathol. 2020; 190(4): 732-41.
doi: S0002-9440(20)30069-9
pmid: 32035884
|
20 |
Ahmadian E, Eftekhari A, Atakishizada S, Valiyeva M, Ardalan M, Khalilov R, et al. Podocytopathy: the role of actin cytoskeleton. Biomed Pharmacother. 2022; 156: 113920.
|
21 |
Elkrief D, Cheng YS, Matusovsky OS, Rassier DE. Oxidation alters myosin-actin interaction and force generation in skeletal muscle filaments. Am J Physiol Cell Physiol. 2022; 323(4): C1206-C1214.
|
22 |
Gao NN, Raduka A, Rezaee F. Respiratory syncytial virus disrupts the airway epithelial barrier by decreasing cortactin and destabilizing F-actin. J Cell Sci. 2022; 135(16): jcs259871.
|
23 |
Chu CY, Jablonska A, Gao Y, Lan XY, Lesniak WG, Liang YJ, et al. Hyperosmolar blood-brain barrier opening using intra-arterial injection of hyperosmotic mannitol in mice under real-time MRI guidance. Nat Protoc. 2022; 17(1): 76-94.
|
24 |
Foley CP, Rubin DG, Santillan A, Sondhi D, Dyke JP, Crystal RG, et al. Intra-arterial delivery of AAV vectors to the mouse brain after mannitol mediated blood brain barrier disruption. J Control Release. 2014; 196: 71-8.
|
25 |
Sampedro-Viana A, Fernández-Rodicio S, Castillo J, Hervella P, Alonso-Alonso ML, Iglesias-Rey R. Assessment of mannitol-induced chronic blood-brain barrier dysfunction in vivo using magnetic resonance. Int J Mol Sci. 2024; 25(18): 9792.
|
26 |
Helms HCC, Kristensen M, Saaby L, Fricker G, Brodin B. Drug delivery strategies to overcome the blood-brain barrier (BBB). Handb Exp Pharmacol. 2022; 273: 151-83.
|
27 |
Umlauf BJ, Clark PA, Lajoie JM, Georgieva JV, Bremner S, Herrin BR, et al. Identification of variable lymphocyte receptors that can target therapeutics to pathologically exposed brain extracellular matrix. Sci Adv. 2019; 5(5): eaau4245.
|
28 |
Peviani M, Capasso Palmiero U, Cecere F, Milazzo R, Moscatelli D, Biffi A. Biodegradable polymeric nanoparticles administered in the cerebrospinal fluid: brain biodistribution, preferential internalization in microglia and implications for cell-selective drug release. Biomaterials. 2019; 209: 25-40.
doi: S0142-9612(19)30223-6
pmid: 31026609
|
31 |
Bhattacharjee AK, Nagashima T, Kondoh T, Tamaki N. The effects of the Na+/Ca2+exchange blocker on osmotic blood-brain barrier disruption. Brain Res. 2001; 900(2): 157-62.
pmid: 11334793
|
32 |
Alfuraih S, Barbarino A, Ross C, Shamloo K, Jhanji V, Zhang M, et al. Effect of high glucose on ocular surface epithelial cell barrier and tight junction proteins. Invest Ophthalmol Vis Sci. 2020; 61(11): 3.
|