1 |
Halpin DMG, Criner GJ, Papi A, Singh D, Anzueto A, Martinez FJ, et al. Global initiative for the diagnosis, management, and prevention of chronic obstructive lung disease. the 2020 GOLD science committee report on COVID-19 and chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2021; 203(1):24-36.
|
2 |
Halpin DMG, Criner GJ, Papi A, Singh D, Anzueto A, Martinez FJ, et al. Global initiative for the diagnosis, management, and prevention of chronic obstructive lung disease. the 2020 GOLD science committee report on COVID-19 and chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2021; 203(1):24-36.
|
3 |
Nunomiya K, Shibata Y, Abe S, Inoue S, Igarashi A, Yamauchi K, et al. Hyperhomocysteinaemia predicts the decline in pulmonary function in healthy male smokers. Eur Respir J. 2013; 42(1):18-27.
doi: 10.1183/09031936.00066212
pmid: 23143543
|
4 |
Finkelstein JD, Martin JJ. Methionine metabolism in mammals. Adaptation to methionine excess. J Biol Chem. 1986; 261(4):1582-7.
pmid: 3080429
|
5 |
Wei B, Tian T, Liu Y, Li C. The diagnostic value of homocysteine for the occurrence and acute progression of chronic obstructive pulmonary disease. BMC Pulm Med. 2020; 20(1):237.
doi: 10.1186/s12890-020-01265-w
pmid: 32894108
|
6 |
Zinellu A, Zinellu E, Pau MC, Fois AG, Mellino S, Piras B, et al. A systematic review and meta-analysis of homocysteine concentrations in chronic obstructive pulmonary disease. Clin Exp Med. 2023; 23(3):751-8.
doi: 10.1007/s10238-022-00833-0
|
7 |
Sandelowsky H, Weinreich UM, Aarli BB, Sundh J, Høines K, Stratelis G, et al. COPD - do the right thing. BMC Fam Pract. 2021; 22(1):244.
doi: 10.1186/s12875-021-01583-w
pmid: 34895164
|
8 |
Ma C, Zhang W, Mao L, Zhang G, Shen Y, Chang H, et al. Hyperhomocysteinemia and intracranial aneurysm: a Mendelian randomization study. Front Neurol. 2022; 13:948989.
doi: 10.3389/fneur.2022.948989
|
9 |
Walker VM, Davey Smith G, Davies NM, Martin RM. Mendelian randomization: a novel approach for the prediction of adverse drug events and drug repurposing opportunities. Int J Epidemiol. 2017; 46(6):2078-89.
doi: 10.1093/ije/dyx207
pmid: 29040597
|
10 |
Davies NM, Holmes MV, Davey Smith G. Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians. BMJ. 2018; 362:k601.
|
11 |
van Meurs JB, Pare G, Schwartz SM, Hazra A, Tanaka T, Vermeulen SH, et al. Common genetic loci influencing plasma homocysteine concentrations and their effect on risk of coronary artery disease. Am J Clin Nutr. 2013; 98(3):668-76.
doi: 10.3945/ajcn.112.044545
pmid: 23824729
|
12 |
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007; 81(3):559-75.
doi: 10.1086/519795
pmid: 17701901
|
13 |
Pierce BL, Ahsan H, Vanderweele TJ. Power and instrument strength requirements for Mendelian randomization studies using multiple genetic variants. Int J Epidemiol. 2011; 40(3):740-52.
doi: 10.1093/ije/dyq151
pmid: 20813862
|
14 |
Bowden J, del Greco MF, Minelli C, Davey Smith G, Sheehan NA, Thompson JR. Assessing the suitability of summary data for two-sample Mendelian randomization analyses using MR-Egger regression: the role of the I2 statistic. Int J Epidemiol. 2016; 45(6):1961-74.
doi: 10.1093/ije/dyw220
pmid: 27616674
|
15 |
Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted Median estimator. Genet Epidemiol. 2016; 40(4):304-14.
doi: 10.1002/gepi.21965
pmid: 27061298
|
16 |
Chaudhary D, Sharma N, Senapati S. Serum homocysteine could be used as a predictive marker for chronic obstructive pulmonary disease: a meta-analysis. Front Public Health. 2019; 7:69.
doi: 10.3389/fpubh.2019.00069
pmid: 31019906
|
17 |
Ställberg B, Janson C, Larsson K, Johansson G, Kostikas K, Gruenberger JB, et al. Real-world retrospective cohort study ARCTIC shows burden of comorbidities in Swedish COPD versus non-COPD patients. NPJ Prim Care Respir Med. 2018; 28(1):33.
doi: 10.1038/s41533-018-0101-y
|
18 |
Barnett K, Mercer SW, Norbury M, Watt G, Wyke S, Guthrie B. Epidemiology of multimorbidity and implications for health care, research, and medical education: a cross-sectional study. Lancet. 2012; 380(9836):37-43.
doi: 10.1016/S0140-6736(12)60240-2
pmid: 22579043
|
19 |
Decramer M, Janssens W, Miravitlles M. Chronic obstructive pulmonary disease. Lancet. 2012; 379(9823):1341-51.
doi: 10.1016/S0140-6736(11)60968-9
pmid: 22314182
|
20 |
Piao X, Wu G, Yang P, Shen J, De A, Wu J, et al. Association between homocysteine and cerebral small vessel disease: a meta-analysis. J Stroke Cerebrovasc Dis. 2018; 27:2423-30.
doi: S1052-3057(18)30213-1
pmid: 29801814
|
21 |
Larsson SC, Traylor M, Markus HS. Homocysteine and small vessel stroke: a Mendelian randomization analysis. Ann Neurol. 2019; 85(4):495-501.
doi: 10.1002/ana.25440
pmid: 30785218
|
22 |
Yuan S, Mason AM, Carter P, Burgess S, Larsson SC. Homocysteine, B vitamins, and cardiovascular disease: a Mendelian randomization study. BMC Med. 2021; 19(1):97.
doi: 10.1186/s12916-021-01977-8
pmid: 33888102
|
23 |
Lee HS, In S, Park T. The homocysteine and metabolic syndrome: a Mendelian randomization study. Nutrients. 2021; 13(7):2440.
doi: 10.3390/nu13072440
|
24 |
Liu WS, Zhang LY, Li S, Liu C, Tong Y, Fang H, et al. A Mendelian randomization study of plasma homocysteine levels and cerebrovascular and neurodegenerative diseases. Front Genet. 2021; 12:653032.
doi: 10.3389/fgene.2021.653032
|
25 |
Park S, Lee S, Kim Y, Cho S, Kim K, Kim YC, et al. Causal effects of homocysteine, folate, and cobalamin on kidney function: a Mendelian randomization study. Nutrients. 2021; 13(3):906.
doi: 10.3390/nu13030906
|
26 |
Zhang YM, Zhou XJ, Shi SF, Liu LJ, Lyu JC, Zhang H. Homocysteine and IgA nephropathy: observational and Mendelian randomization analyses. Chin Med J (Engl). 2020; 133(3):277-84.
|
27 |
Andersson I, Grönberg A, Slinde F, Bosaeus I, Larsson S. Vitamin and mineral status in elderly patients with chronic obstructive pulmonary disease. Clin Respir J. 2007; 1(1):23-9.
doi: 10.1111/j.1752-699X.2007.00003.x
pmid: 20298274
|
28 |
Bhargava S, Tyagi SC. Nutriepigenetic regulation by folate-homocysteine-methionine axis: a review. Mol Cell Biochem. 2014; 387(1-2):55-61.
doi: 10.1007/s11010-013-1869-2
pmid: 24213682
|
29 |
Nazki FH, Sameer AS, Ahmad Ganaie B. Folate: metabolism, genes, polymorphisms and the associated diseases. Gene. 2014; 533(1):11-20.
doi: 10.1016/j.gene.2013.09.063
pmid: 24091066
|
30 |
Mahajan A, Sapehia D, Thakur S, Mohanraj PS, Bagga R, Kaur J. Effect of imbalance in folate and vitamin B12 in maternal/parental diet on global methylation and regulatory miRNAs. Sci Rep. 2019; 9:17602.
doi: 10.1038/s41598-019-54070-9
pmid: 31772242
|
31 |
Fimognari FL, Loffredo L, di Simone S, Sampietro F, Pastorelli R, Monaldo M, et al. Hyperhomocysteinaemia and poor vitamin B status in chronic obstructive pulmonary disease. Nutr Metab Cardiovasc Dis. 2009; 19(9):654-9.
doi: 10.1016/j.numecd.2008.12.006
pmid: 19282159
|