1 |
Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020; 382(18):1708-20.
doi: 10.1056/NEJMoa2002032
|
2 |
World Health Organization. Coronavirus disease (COVID-19) outbreak. Available at https://www.who.int/emergencies/diseases/novel-coronavirus-2019 .
|
3 |
Bernheim A, Mei XY, Huang MQ, Yang Y, Fayad ZA, Zhang N, et al. Chest CT findings in coronavirus disease-19 (COVID-19): relationship to duration of infection. Radiology. 2020; 295(3):200463.
doi: 10.1148/radiol.2020200463
pmid: 32077789
|
4 |
Pan F, Ye TH, Sun P, Gui S, Liang B, Li LL, et al. Time course of lung changes at chest CT during recovery from coronavirus disease 2019 (COVID-19). Radiology. 2020; 295(3):715-21.
doi: 10.1148/radiol.2020200370
|
5 |
Ye Z, Zhang Y, Wang Y, Huang ZX, Song B. Chest CT manifestations of new coronavirus disease 2019 (COVID-19): a pictorial review. Eur Radiol. 2020; 30(8):4381-9.
doi: 10.1007/s00330-020-06801-0
|
6 |
Zhou SC, Wang YJ, Zhu TT, Xia LM. CT features of coronavirus disease 2019 (COVID-19) pneumonia in 62 patients in Wuhan, China. AJR Am J Roentgenol. 2020; 214(6):1287-94.
doi: 10.2214/AJR.20.22975
|
7 |
Shi F, Wang J, Shi J, Wu Z, Wang Q, Tang Z, et al. Review of artificial intelligence techniques in imaging data acquisition, segmentation and diagnosis for COVID-19. IEEE Rev Biomed Eng. 2021; 14:4-15.
doi: 10.1109/RBME.4664312
|
8 |
Li L, Qin LX, Xu ZG, Yin YB, Xia J. Artificial intelligence distinguishes COVID-19 from community acquired pneumonia on chest CT. Radiology. 2020; 296(2):200905.
|
9 |
Li L, Qin LX, Xu ZG, Yin YB, Wang X, Kong B, et al. Using artificial intelligence to detect COVID-19 and community-acquired pneumonia based on pulmonary CT: evaluation of the diagnostic accuracy. Radiology. 2020; 296(2):E65-71.
doi: 10.1148/radiol.2020200905
|
10 |
Jacob J, Alexander D, Baillie JK, Berka R, Bertolli O, Blackwood J, et al. Using imaging to combat a pandemic: rationale for developing the UK National COVID-19 Chest Imaging Database. Eur Respir J. 2020; 56(2):2001809.
doi: 10.1183/13993003.01809-2020
|
11 |
Bai HX, Wang R, Xiong Z, Hsieh B, Chang K, Halsey K, et al. Artificial intelligence augmentation of radiologist performance in distinguishing COVID-19 from pneumonia of other origin at chest CT. Radiology. 2021; 299(1):E225.
doi: 10.1148/radiol.2021219004
|
12 |
Metlay JP, Waterer GW, Long AC, Anzueto A, Brozek J, Crothers K, et al. Diagnosis and Treatment of Adults with Community-acquired Pneumonia. An Official Clinical Practice Guideline of the American Thoracic Society and Infectious Diseases Society of America. Am J Respir Crit Care Med. 2019; 200(7):e45-7.
doi: 10.1164/rccm.201908-1581ST
|
13 |
Ji M, Yuan L, Shen W, Lv J, Li Y, Chen J, et al. A predictive model for disease progression in non-severely ill patients with coronavirus disease 2019. Eur Respir J. 2020; 56(1):2001234.
doi: 10.1183/13993003.01234-2020
|
14 |
Liang HY, Tsui BY, Ni H, Valentim CCS, Baxter SL, Liu GJ, et al. Evaluation and accurate diagnoses of pediatric diseases using artificial intelligence. Nat Med. 2019; 25(3):433-8.
doi: 10.1038/s41591-018-0335-9
|
15 |
Luo X, Jiaerken Y, Shen Z, Wang Q, Liu B, Zhou H, et al. Obese COVID-19 patients show more severe pneumonia lesions on CT. Diabetes Obes Metab. 2021; 23(1):290-3.
doi: 10.1111/dom.v23.1
|
16 |
Pan F, Li L, Liu B, Ye TH, Li LL, Liu DH, et al. A novel deep learning-based quantification of serial chest computed tomography in Coronavirus Disease 2019 (COVID-19). Sci Rep. 2021; 11(1):417.
doi: 10.1038/s41598-020-80261-w
|
17 |
Huang PK, Liu TZ, Huang LS, Liu HL, Lei M, Xu WD, et al. Use of chest CT in combination with negative RT-PCR assay for the 2019 novel coronavirus but high clinical suspicion. Radiology. 2020; 295(1):22-3.
doi: 10.1148/radiol.2020200330
|
18 |
Yang R, Li X, Liu H, Zhen YL, Zhang XX, Xiong QX, et al. Chest CT severity score: an imaging tool for assessing severe COVID-19. Radiol Cardiothorac Imaging. 2020; 2(2):e200047.
doi: 10.1148/ryct.2020200047
pmid: 33778560
|
19 |
Jiang XG, Coffee M, Bari A, Wang JZ, Jiang XY, Huang JP, et al. Towards an artificial intelligence framework for data-driven prediction of coronavirus clinical severity. Comput Mater Continua. 2020; 62(3):537-51.
|
20 |
Shen C, Yu N, Cai S, Zhou J, Sheng J, Liu K, et al. Quantitative computed tomography analysis for stratifying the severity of Coronavirus Disease 2019. J Pharm Anal. 2020; 10(2):123-9.
doi: 10.1016/j.jpha.2020.03.004
|
21 |
Tang ZY, Zhao W, Xie XZ, Zhong Z, Shi F, Liu J, et al. Severity assessment of Coronavirus Disease 2019(COVID-19) using quantitative features from chest CT images. arXiv:200311988 2020. Available at https://www.semanticscholar.org/paper/Severity-Assessment-of-Coronavirus-Disease-2019-CT-Tang-Zhao/a9ad10ebac0e5012f278c715ccbc9c87deebe0aa .
|
22 |
Aylett-Bullock J, Luccioni A, Pham KH, Lam CS, Luengo-Oroz MA. Mapping the landscape of artificial intelligence applications against COVID-19. J Artif Intell Res. 2020; 69:807-45.
doi: 10.1613/jair.1.12162
|
23 |
McCall B. COVID-19 and artificial intelligence: protecting health-care workers and curbing the spread. Lancet Digit Health. 2020; 2(4):e166-7.
|
24 |
Bai HX, Hsieh B, Xiong Z, Halsey K, Choi JW, Tran TML, et al. Performance of radiologists in differentiating COVID-19 from non-COVID-19 viral pneumonia at chest CT. Radiology. 2020; 296(2):E46-54.
doi: 10.1148/radiol.2020200823
|
25 |
Zhang K, Liu X, Shen J, Li Z, Sang Y, Wu X, et al. Clinically applicable AI system for accurate diagnosis, quantitative measurements, prognosis of COVID-19 pneumonia using computed tomography. Cell. 2020; 181(6):1423-3.e1411.
|
26 |
Naudé W. Artificial intelligence vs COVID-19: limitations, constraints and pitfalls. AI Soc. 2020;1-5.
|