1 |
Matthews EA, Magid-Bernstein J, Presciutti A, Rodriguez A, Roh D, Park S, et al. Categorization of survival and death after cardiac arrest. Resuscitation. 2017; 114:79-82.
doi: 10.1016/j.resuscitation.2017.03.005
pmid: 28279695
|
2 |
Rossetti AO, Rabinstein AA, Oddo M. Neurological prognostication of outcome in patients in coma after cardiac arrest. Lancet Neurol. 2016; 15(6):597-609.
pmid: 27017468
|
3 |
Halhalli HC, Özbek AE, Çelİk E, Yİğİt Y, Yilmaz S, Çardak M. Benefits of using an endotracheal tube introducer as an adjunct to a Macintosh laryngoscope for endotracheal intubation performed by inexperienced doctors during mechanical CPR: A randomized prospective crossover study. World J Emerg Med. 2019; 10(3):182-6.
doi: 10.5847/wjem.j.1920-8642.2019.03.009
pmid: 31171950
|
4 |
Chan PS, Berg RA, Tang Y, Curtis LH, Spertus JA. Association between therapeutic hypothermia and survival after in-hospital cardiac arrest. JAMA. 2016; 316(13):1375-82.
pmid: 27701659
|
5 |
Geocadin R, Tahsili-Fahadan P, Farrokh S. Hypothermia and brain inflammation after cardiac arrest. Brain Circ. 2018; 4(1):1-13.
doi: 10.4103/bc.bc_4_18
pmid: 30276330
|
6 |
Steinberg GK, Kondziolka D, Wechsler LR, Lunsford LD, Coburn ML, Billigen JB, et al. Clinical outcomes of transplanted modified bone marrow-derived mesenchymal stem cells in stroke: a phase 1/2a study. Stroke. 2016; 47(7):1817-24.
doi: 10.1161/STROKEAHA.116.012995
pmid: 27256670
|
7 |
Chung TN, Kim JH, Choi BY, Jeong JY, Chung SP, Kwon SW, et al. Effect of adipose-derived mesenchymal stem cell administration and mild hypothermia induction on delayed neuronal death after transient global cerebral ischemia. Crit Care Med. 2017; 45(5):e508-15.
doi: 10.1097/CCM.0000000000002289
pmid: 28252535
|
8 |
Mathieu M, Martin-Jaular L, Lavieu G, Thery C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol. 2019; 21(1):9-17.
pmid: 30602770
|
9 |
Liu L, Jin X, Hu CF, Li R, Zhou Z, Shen CX. Exosomes derived from mesenchymal stem cells rescue myocardial ischaemia/reperfusion injury by inducing cardiomyocyte autophagy via AMPK and Akt pathways. Cell Physiol Biochem. 2017; 43(1):52-68.
doi: 10.1159/000480317
pmid: 28848091
|
10 |
Li L, Wang R, Jia Y, Rong R, Xu M, Zhu T. Exosomes derived from mesenchymal stem cells ameliorate renal ischemic-reperfusion injury through inhibiting inflammation and cell apoptosis. Front Med (Lausanne). 2019; 6:269.
|
11 |
Xu L, Cao H, Xie Y, Zhang Y, Du M, Xu X, et al. Exosome-shuttled miR-92b-3p from ischemic preconditioned astrocytes protects neurons against oxygen and glucose deprivation. Brain Res. 2019; 1717:66-73.
doi: 10.1016/j.brainres.2019.04.009
pmid: 30986407
|
12 |
Xia R, Ji C, Zhang L. Neuroprotective effects of pycnogenol against oxygen-glucose deprivation/reoxygenation-induced injury in primary rat astrocytes via NF-kappa B and ERK1/2 MAPK pathways. Cell Physiol Biochem. 2017; 42(3):987-98.
pmid: 28662519
|
13 |
Teixeira FG, Carvalho MM, Sousa N, Salgado AJ. Mesenchymal stem cells secretome: a new paradigm for central nervous system regeneration? Cell Mol Life Sci. 2013; 70(20):3871-82.
pmid: 23456256
|
14 |
Keshtkar S, Azarpira N, Ghahremani MH. Mesenchymal stem cell-derived extracellular vesicles: novel frontiers in regenerative medicine. Stem Cell Res Ther. 2018; 9(1):63.
doi: 10.1186/s13287-018-0791-7
pmid: 29523213
|
15 |
Deng M, Xiao H, Zhang H, Peng H, Yuan H, Xu Y, et al. Mesenchymal stem cell-derived extracellular vesicles ameliorate hippocampal synaptic impairment after transient global ischemia. Front Cell Neurosci. 2017; 11:205.
pmid: 28769765
|
16 |
Xin H, Katakowski M, Wang F, Qian JY, Liu XS, Ali MM, et al. MicroRNA cluster miR-17-92 cluster in exosomes enhance neuroplasticity and functional recovery after stroke in rats. Stroke. 2017; 48(3):747-53.
doi: 10.1161/STROKEAHA.116.015204
pmid: 28232590
|
17 |
Gong Z, Pan J, Shen Q, Li M, Peng Y. Mitochondrial dysfunction induces NLRP3 inflammasome activation during cerebral ischemia/reperfusion injury. J Neuroinflammation. 2018; 15(1):242.
doi: 10.1186/s12974-018-1282-6
pmid: 30153825
|
18 |
Bracken C, Beauverger P, Duclos O, Russo RJ, Rogers KA, Husson H, et al. CaMK II as a pathological mediator of ER stress, oxidative stress, and mitochondrial dysfunction in a murine model of nephronophthisis. Am J Physiol Renal Physiol. 2016; 310(11):F1414-22.
pmid: 27076647
|
19 |
Li C, Li L, Lin B, Fang Y, Yang H, Liu H, et al. Tris (1,3-dichloro-2-propyl) phosphate induces toxicity by stimulating CaMK 2 in PC12 cells. Environ Toxicol. 2017; 32(6):1784-91.
doi: 10.1002/tox.22401
pmid: 28181390
|
20 |
Mockett BG, Guevremont D, Wutte M, Hulme SR, Williams JM, Abraham WC. Calcium/calmodulin-dependent protein kinase II mediates group I metabotropic glutamate receptor-dependent protein synjournal and long-term depression in rat hippocampus. J Neurosci. 2011; 31(20):7380-91.
pmid: 21593322
|
21 |
Neher E, Sakaba T. Multiple roles of calcium ions in the regulation of neurotransmitter release. Neuron. 2008; 59(6):861-72.
doi: 10.1016/j.neuron.2008.08.019
pmid: 18817727
|
22 |
Wayman GA, Lee YS, Tokumitsu H, Silva AJ, Soderling TR. Calmodulin-kinases: modulators of neuronal development and plasticity. Neuron. 2008; 59(6):914-31.
doi: 10.1016/j.neuron.2008.08.021
|
23 |
Zhu MX, Lu C, Xia CM, Qiao ZW, Zhu DN. Simvastatin pretreatment protects cerebrum from neuronal injury by decreasing the expressions of phosphor-CaMK II and AQP4 in ischemic stroke rats. J Mol Neurosci. 2014; 54(4):591-601.
doi: 10.1007/s12031-014-0307-6
pmid: 24752488
|
24 |
Wang Y, Zhao R, Liu D, Deng W, Xu G, Liu W, et al. Exosomes derived from miR-214-enriched bone marrow-derived mesenchymal stem cells regulate oxidative damage in cardiac stem cells by targeting CaMK II. Oxid Med Cell Longev. 2018; 2018:4971261.
doi: 10.1155/2018/4971261
pmid: 30159114
|