[1] |
Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016; 315(8): 801-10.
doi: 10.1001/jama.2016.0287
pmid: 26903338
|
[2] |
Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi D, Kievlan DR, et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study. Lancet. 2020; 395(10219): 200-11.
|
[3] |
Pasricha SR, Tye-Din J, Muckenthaler MU, Swinkels DW. Iron deficiency. Lancet. 2021; 397(10270): 233-48.
|
[4] |
Ganz T, Nemeth E. Iron homeostasis in host defence and inflammation. Nat Rev Immunol. 2015; 15(8): 500-10.
doi: 10.1038/nri3863
pmid: 26160612
|
[5] |
Carver PL. The battle for iron between humans and microbes. Curr Med Chem. 2018; 25(1): 85-96.
doi: 10.2174/0929867324666170720110049
pmid: 28730969
|
[6] |
Liu LL, Wang W, Wu SH, Gao HC. Recent advances in the siderophore biology of Shewanella. Front Microbiol. 2022;13: 823758.
|
[7] |
Nairz M, Weiss G. Iron in infection and immunity. Mol Aspects Med. 2020;75: 100864.
|
[8] |
Soares MP, Hamza I. Macrophages and iron metabolism. Immunity. 2016; 44(3): 492-504.
doi: S1074-7613(16)30054-1
pmid: 26982356
|
[9] |
McCullough K, Bolisetty S. Iron homeostasis and ferritin in sepsis-associated kidney injury. Nephron. 2020; 144(12): 616-20.
|
[10] |
Tacke F, Nuraldeen R, Koch A, Strathmann K, Hutschenreuter G, Trautwein C, et al. Iron parameters determine the prognosis of critically ill patients. Crit Care Med. 2016; 44(6): 1049-58.
doi: 10.1097/CCM.0000000000001607
pmid: 26934143
|
[11] |
Brandtner A, Tymoszuk P, Nairz M, Lehner GF, Fritsche G, Vales A, et al. Linkage of alterations in systemic iron homeostasis to patients’ outcome in sepsis: a prospective study. J Intensive Care. 2020;8: 76.
|
[12] |
An MM, Liu CX, Gong P. Effects of continuous renal replacement therapy on inflammation-related anemia, iron metabolism and prognosis in sepsis patients with acute kidney injury. World J Emerg Med. 2023; 14(3): 186-92.
|
[13] |
Lan P, Pan KH, Wang SJ, Shi QC, Yu YX, Fu Y, et al. High serum iron level is associated with increased mortality in patients with sepsis. Sci Rep. 2018; 8(1): 11072.
|
[14] |
Weis S, Carlos AR, Moita MR, Singh S, Blankenhaus B, Cardoso S, et al. Metabolic adaptation establishes disease tolerance to sepsis. Cell. 2017; 169(7): 1263-75.e14.
doi: S0092-8674(17)30592-5
pmid: 28622511
|
[15] |
Kyriazopoulou E, Leventogiannis K, Norrby-Teglund A, Dimopoulos G, Pantazi A, Orfanos SE, et al. Macrophage activation-like syndrome: an immunological entity associated with rapid progression to death in sepsis. BMC Med. 2017; 15(1): 172.
|
[16] |
Hortová-Kohoutková M, Skotáková M, Onyango IG, Slezáková M, Panovský R, Opatřil L, et al. Hepcidin and ferritin levels as markers of immune cell activation during septic shock, severe COVID-19 and sterile inflammation. Front Immunol. 2023;14: 1110540.
|
[17] |
He LD, Guo CR, Su YJ, Ding N. The relationship between serum ferritin level and clinical outcomes in sepsis based on a large public database. Sci Rep. 2023; 13(1): 8677.
|
[18] |
Xu XC, Liu YH, Tang MY, Yan YY, Gu W, Wang W, et al. The function of Eriocheir sinensis transferrin and iron in Spiroplasma eriocheiris infection. Fish Shellfish Immunol. 2018;79: 79-85.
|
[19] |
Yadav D, Pvsn KK, Tomo S, Sankanagoudar S, Charan J, Purohit A, et al. Association of iron-related biomarkers with severity and mortality in COVID-19 patients. J Trace Elem Med Biol. 2022;74: 127075.
|
[20] |
Gu GX, Pan ST, Fan YC, Chen C, Xia Q. Development and validation of a nomogram to predict allograft survival after pediatric liver transplantation. World J Pediatr. 2024; 20(3):239-49.
|
[21] |
Ko RE, Kang D, Cho J, Na SJ, Chung CR, Lim SY, et al. Influence of gender on age-associated in-hospital mortality in patients with sepsis and septic shock: a prospective nationwide multicenter cohort study. Crit Care. 2023; 27(1): 229.
|
[22] |
Zhang LM, Huang T, Xu FS, Li SJ, Zheng S, Lyu J, et al. Prediction of prognosis in elderly patients with sepsis based on machine learning (random survival forest). BMC Emerg Med. 2022; 22(1): 26.
|
[23] |
Sane M, Kharshikar AV. Effect of missing an influential covariate. Commun Stat Theory Meth. 2001; 30(5): 837-53.
|
[24] |
Jiamsakul A, Kerr SJ, Chandrasekaran E, Huelgas A, Taecharoenkul S, Teeraananchai S, et al. The occurrence of Simpson’s paradox if site-level effect was ignored in the TREAT Asia HIV Observational Database. J Clin Epidemiol. 2016;76: 183-92.
|