World Journal of Emergency Medicine ›› 2023, Vol. 14 ›› Issue (2): 89-95.doi: 10.5847/wjem.j.1920-8642.2023.031
• Original Articles • Next Articles
Kota Shinada1(), Hiroyuki Koami2, Ayaka Matsuoka2, Yuichiro Sakamoto1
Received:
2022-08-09
Online:
2023-03-03
Published:
2023-03-01
Contact:
Kota Shinada
E-mail:st9137@cc.saga-u.ac.jp
Kota Shinada, Hiroyuki Koami, Ayaka Matsuoka, Yuichiro Sakamoto. Prediction of return of spontaneous circulation in out-of-hospital cardiac arrest with non-shockable initial rhythm using point-of-care testing: a retrospective observational study[J]. World Journal of Emergency Medicine, 2023, 14(2): 89-95.
Add to citation manager EndNote|Ris|BibTeX
URL: http://wjem.com.cn/EN/10.5847/wjem.j.1920-8642.2023.031
Table 1.
Characteristics of patients with OHCA in the ROSC and non-ROSC groups
Variables | All (n=202) | ROSC (n=67) | Non-ROSC (n=135) | P-value | |
---|---|---|---|---|---|
Age, years, median (interquartile) | 80 (68.8-87) | 80 (73-87) | 79 (66-87) | 0.2068 | |
Female, n (%) | 84 (41.6) | 39 (58.2) | 45 (33.3) | 0.0009 | |
Witness, n (%) | 64 (31.7) | 34 (50.8) | 30 (22.2) | <0.001 | |
Bystander CPR, n (%) | 104 (51.5) | 32 (47.8) | 72 (53.3) | 0.5500 | |
Initial rhythm, n (%) | |||||
PEA | 49 (24.3) | 25 (37.3) | 24 (17.8) | 0.0031 | |
Asystole | 153 (75.7) | 42 (62.7) | 111 (82.2) | 0.0031 | |
Physician-staffed EMS, n (%) | 35 (17.3) | 16 (23.9) | 19 (14.1) | 0.1131 | |
Prehospital advanced airway management, n (%) | 48 (23.8) | 23 (34.3) | 25 (18.5) | 0.0217 | |
Prehospital epinephrine administration, n (%) | 43 (21.3) | 18 (26.9) | 25 (18.5) | 0.2021 | |
Time from EMS call to EMS arrival, min, median (interquartile) | 11 (9-14) | 11 (9-14) | 11 (9-14) | 0.8999 | |
Time from EMS arrival to hospital arrival, min, median(interquartile) | 23 (18-31) | 25 (20-34) | 22 (17-30) | 0.0338 | |
Cause of cardiac arrest, n (%) | |||||
Cardiac | 188 (93.1) | 59 (88.1) | 129 (95.6) | 0.0740 | |
Respiratory | 2 (1.0) | 1 (1.5) | 1 (0.7) | 1.0000 | |
Neurological | 3 (1.5) | 3 (4.5) | 0 (0.0) | 0.0354 | |
Sepsis | 3 (1.5) | 2 (3.0) | 1 (0.7) | 0.2559 | |
Hemorrhage | 6 (3.0) | 2 (3.0) | 4 (3.0) | 1.0000 | |
Neck hanging | 8 (4.0) | 1 (1.5) | 7 (5.2) | 0.2743 | |
Choking | 22 (10.9) | 17 (25.4) | 5 (3.7) | <0.0001 | |
Drowning | 10 (5.0) | 1 (1.5) | 9 (6.7) | 0.1699 | |
Drug addiction | 2 (1.0) | 0 (0.0) | 2 (1.5) | 1.0000 | |
Others | 8 (4.0) | 3 (4.5) | 5 (3.7) | 1.0000 |
Table 2.
POCT parameters of patients with OHCA in the ROSC and non-ROSC groups, median (interquartile)
POCT parameters | All (n=202) | ROSC (n=67) | Non-ROSC (n=135) | P-value | |
---|---|---|---|---|---|
Complete blood count | |||||
White blood cell, /μL | 9,100 (7,100-11,425) | 9,400 (7,700-12,800) | 9,000 (6,900-11,100) | 0.1479 | |
Hemoglobin, g/dL | 11.1 (9.4-13.1) | 10.8 (8.9-12.9) | 11.3 (9.6-13.3) | 0.1627 | |
Platelet, 104/μL | 122 (77-184) | 151 (102-198) | 107 (62-168) | 0.0026 | |
Blood gas | |||||
pH | 6.847 (6.750-6.951) | 6.864 (6.790-6.962) | 6.842 (6.701-6.939) | 0.0393 | |
pCO2, mmHg | 90.3 (68.2-110) | 75.7 (61.0-96.6) | 96 (72.4-115.5) | 0.0002 | |
pO2, mmHg | 29.2 (19.4-52.0) | 31.2 (19.6-80.4) | 28.9 (19.0-43.6) | 0.0550 | |
Sodium ion, mEq/L | 141 (137-144) | 141 (137-145) | 140 (136-144) | 0.4966 | |
Potassium ion, mEq/L | 6.8 (5.3-9.2) | 5.5 (4.7-6.9) | 8.1 (5.9-10.0) | <0.001 | |
Chloride ion, mEq/L | 102 (97-105) | 103 (98-105) | 101 (96-105) | 0.2472 | |
Actual base excess, mEq/L | -20.2 (-24.7--15.9) | -19.3 (-24.2--13.8) | -20.8 (-25--16.3) | 0.1794 | |
Bicarbonate ion, mEq/L | 15.2 (11.1-18.8) | 15.5 (10-19.2) | 14.8 (11.7-17.9) | 0.8537 | |
Blood glucose, mg/dL | 231 (137-352) | 238 (156-342) | 219 (129-355) | 0.7277 | |
Lactate, mmol/L | 14.9 (10.8-18.0) | 12.5 (9.4-17.0) | 16.0 (12.5-19.0) | 0.0003 | |
ROTEM EXTEM | |||||
CT, s | 90 (69-184) | 74 (66-106) | 108 (71-1430) | <0.001 | |
A5, mm | 30 (10-42) | 36 (29-49) | 22 (0-40) | <0.001 | |
A10, mm | 40 (6-53) | 47 (37-59) | 31 (0-50) | <0.001 | |
A15, mm | 40 (1-56) | 52 (30-63) | 35 (0-53) | 0.0001 | |
A20, mm | 42 (0-58) | 54 (22-65) | 34 (0-55) | 0.0002 | |
A25, mm | 42 (0-59) | 55 (16-66) | 21 (0-56) | 0.0004 | |
A30, mm | 37 (0-58) | 53 (2-65) | 13 (0-53) | 0.0005 | |
MCF, mm | 48 (16-60) | 56 (44-67) | 41 (0-57) | <0.001 |
Table 3.
ROC analysis in measurement items
Parameters | AUC | Youden’s index | Sensitivity (%) | Specificity (%) |
---|---|---|---|---|
Platelet | 0.63 | 125 | 68.7 | 62.2 |
pH | 0.59 | 6.781 | 81.8 | 37.9 |
pCO2 | 0.66 | 85.2 | 63.6 | 64.9 |
Potassium ion | 0.77 | 7.7 | 94.0 | 52.6 |
Lactate | 0.66 | 14.3 | 62.1 | 64.8 |
CT | 0.67 | 128 | 86.6 | 44.4 |
A5 | 0.70 | 28 | 79.1 | 61.7 |
A10 | 0.67 | 40 | 74.6 | 62.2 |
A15 | 0.67 | 43 | 70.2 | 64.4 |
A20 | 0.66 | 45 | 67.2 | 63.7 |
A25 | 0.65 | 48 | 62.7 | 66.7 |
A30 | 0.65 | 50 | 56.7 | 71.8 |
MCF | 0.69 | 50 | 67.2 | 63.7 |
Table 4.
Logistic regression analysis for ROSC
Variables | Odds ratio | 95% confidence interval | P-value |
---|---|---|---|
Age | 1.01 | 0.98-1.04 | 0.4536 |
Female | 3.67 | 1.67-8.04 | 0.0012 |
Witness | 1.68 | 0.72-3.91 | 0.2294 |
Bystander CPR | 0.83 | 0.38-1.80 | 0.6311 |
Initial rhythm (PEA) | 0.61 | 0.24-1.55 | 0.2956 |
Prehospital advanced airway management | 1.82 | 0.65-5.05 | 0.2518 |
Prehospital epinephrine administration | 0.35 | 0.11-1.08 | 0.0671 |
Time from EMS call to EMS arrival | 0.98 | 0.89-1.08 | 0.6490 |
Time from EMS arrival to hospital arrival | 1.02 | 0.98-1.06 | 0.4109 |
pCO2 | 0.99 | 0.97-1.00 | 0.0533 |
Potassium ion | 0.64 | 0.48-0.84 | 0.0018 |
Lactate | 1.02 | 0.92-1.12 | 0.7299 |
ROTEM EXTEM A5 | 1.03 | 1.01-1.06 | 0.0029 |
Nagelkerke R2=0.29 | |||
P <0.001 |
[1] | Gräsner JT, Herlitz J, Tjelmeland IBM, Wnent J, Masterson S, Lilja G, et al. European Resuscitation Council Guidelines 2021: Epidemiology of cardiac arrest in Europe. Resuscitation. 2021;161: 61-79. |
[2] | Nolan JP, Hazinski MF, Billi JE, Boettiger BW, Bossaert L, de Caen AR, et al. Part 1: executive summary: 2010 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. Resuscitation. 2010; 81 Suppl (1): e1-e25. |
[3] |
Liu N, Ho AFW, Pek PP, Lu TC, Khruekarnchana P, Song KJ, et al. Prediction of ROSC after cardiac arrest using machine learning. Stud Health Technol Inform. 2020; 270: 1357-8.
doi: 10.3233/SHTI200440 pmid: 32570657 |
[4] |
Issa MS, Grossestreuer AV, Patel H, Ntshinga L, Coker A, Yankama T, et al. Lactate and hypotension as predictors of mortality after in-hospital cardiac arrest. Resuscitation. 2021; 158: 208-14.
doi: 10.1016/j.resuscitation.2020.10.018 pmid: 33289651 |
[5] |
Bunch TJ, White RD, Friedman PA, Kottke TE, Wu LA, Packer DL. Trends in treated ventricular fibrillation out-of-hospital cardiac arrest: a 17-year population-based study. Heart Rhythm. 2004; 1(3): 255-9.
pmid: 15851165 |
[6] |
Hatakeyama T, Kiguchi T, Sera T, Nachi S, Ochiai K, Kitamura T, et al. Physician’s presence in pre-hospital setting improves one-month favorable neurological survival after out-of-hospital cardiac arrest: a propensity score matching analysis of the JAAM-OHCA Registry. Resuscitation. 2021; 167: 38-46.
doi: 10.1016/j.resuscitation.2021.08.010 pmid: 34390825 |
[7] |
Kuisma M, Repo J, Alaspää A. The incidence of out-of-hospital ventricular fibrillation in Helsinki, Finland, from 1994 to 1999. Lancet. 2001; 358 (9280): 473-4
pmid: 11513916 |
[8] | Link MS, Berkow LC, Kudenchuk PJ, Halperin HR, Hess EP, Moitra VK, et al. Part 7: adult advanced cardiovascular life support: 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2015; 132 (18 Suppl 2): S444-64. |
[9] |
Luo SY, Zhang YS, Zhang WW, Zheng RY, Tao J, Xiong Y. Prognostic significance of spontaneous shockable rhythm conversion in adult out-of-hospital cardiac arrest patients with initial non-shockable heart rhythms: a systematic review and meta-analysis. Resuscitation. 2017; 121: 1-8.
doi: S0300-9572(17)30624-X pmid: 28943123 |
[10] |
Ji C, Brown TP, Booth SJ, Hawkes C, Nolan JP, Mapstone J, et al. Risk prediction models for out-of-hospital cardiac arrest outcomes in England. Eur Heart J Qual Care Clin Outcomes. 2021; 7(2): 198-207.
doi: 10.1093/ehjqcco/qcaa019 pmid: 32154865 |
[11] | Choi DS, Shin SD, Ro YS, Lee KW. Relationship between serum potassium level and survival outcome in out-of-hospital cardiac arrest using CAPTURES database of Korea: does hypokalemia have good neurological outcomes in out-of-hospital cardiac arrest? Adv Clin Exp Med. 2020; 29(6): 727-34. |
[12] | Torres EC, Hernández-Tejedor A, Bustamante RS, de Elías Hernández R, Flórez IC, Linares ASJ. Prognostic value of venous blood analysis at the start of CPR in non-traumatic out-of-hospital cardiac arrest: association with ROSC and the neurological outcome. Crit Care. 2020;24(1): 60. |
[13] |
Shida H, Matsuyama T, Komukai S, Irisawa T, Yamada T, Yoshiya K, et al. Early prognostic impact of serum sodium level among out-of-hospital cardiac arrest patients: a nationwide multicentre observational study in Japan (the JAAM-OHCA registry). Heart Vessels. 2022; 37(7): 1255-64.
doi: 10.1007/s00380-022-02020-3 pmid: 35044522 |
[14] |
Lin CH, Chi CH, Wu SY, Hsu HC, Chang YH, Huang YY, et al. Prognostic values of blood ammonia and partial pressure of ammonia on hospital arrival in out-of-hospital cardiac arrests. Am J Emerg Med. 2013; 31(1): 8-15.
doi: 10.1016/j.ajem.2012.04.037 |
[15] |
Sodeck GH, Domanovits H, Sterz F, Schillinger M, Losert H, Havel C, et al. Can brain natriuretic peptide predict outcome after cardiac arrest? An observational study. Resuscitation. 2007; 74(3): 439-45.
doi: 10.1016/j.resuscitation.2007.02.001 pmid: 17451863 |
[16] |
Dadeh AA, Nuanjaroan B. Using initial serum lactate level in the emergency department to predict the sustained return of spontaneous circulation in nontraumatic out-of-hospital cardiac arrest patients. Open Access Emerg Med. 2018; 10: 105-11.
doi: 10.2147/OAEM.S165154 |
[17] |
Lonsain WS, De Lausnay L, Wauters L, Desruelles D, Dewolf P. The prognostic value of early lactate clearance for survival after out-of-hospital cardiac arrest. Am J Emerg Med. 2021; 46: 56-62.
doi: 10.1016/j.ajem.2021.03.013 pmid: 33721591 |
[18] |
Sarıaydın T, Çorbacıoğlu ŞK, Çevik Y, Emektar E. Effect of initial lactate level on short-term survival in patients with out-of-hospital cardiac arrest. Turkish J Emerg Med. 2017; 17(4): 123-7.
doi: 10.1016/j.tjem.2017.05.003 |
[19] | Koizumi G, Mikura K, Iida T, Kaji M, Hashizume M, Murai N, et al. Analysis of the relationships between multiple endocrine hormones and return of spontaneous circulation (ROSC) in cardiac arrest patients: possible association of the serum free T 4 level with ROSC. Int J Endocrinol. 2020; 2020: 4168420. |
[20] |
Leitner JM, Jilma B, Spiel AO, Sterz F, Laggner AN, Janata KM. Massive pulmonary embolism leading to cardiac arrest is associated with consumptive coagulopathy presenting as disseminated intravascular coagulation. J Thromb Haemost. 2010; 8(7): 1477-82.
doi: 10.1111/j.1538-7836.2010.03862.x pmid: 20345721 |
[21] |
Viersen VA, Greuters S, Korfage AR, Van der Rijst C, Van Bochove V, Nanayakkara PW, et al. Hyperfibrinolysis in out of hospital cardiac arrest is associated with markers of hypoperfusion. Resuscitation. 2012; 83(12): 1451-5.
doi: 10.1016/j.resuscitation.2012.05.008 pmid: 22634432 |
[22] |
Gruebl T, Ploeger B, Wranze-Bielefeld E, Mueller M, Schmidbauer W, Kill C, et al. Point-of-care testing in out-of-hospital cardiac arrest: a retrospective analysis of relevance and consequences. Scand J Trauma Resusc Emerg Med. 2021; 29(1): 128.
doi: 10.1186/s13049-021-00943-w |
[23] |
Schöchl H, Cadamuro J, Seidl S, Franz A, Solomon C, Schlimp CJ, et al. Hyperfibrinolysis is common in out-of-hospital cardiac arrest: results from a prospective observational thromboelastometry study. Resuscitation. 2013; 84(4): 454-9.
doi: 10.1016/j.resuscitation.2012.08.318 pmid: 22922072 |
[24] |
Kashuk JL, Moore EE, Sabel A, Barnett C, Haenel J, Le T, et al. Rapid thrombelastography (r-TEG) identifies hypercoagulability and predicts thromboembolic events in surgical patients. Surgery. 2009; 146(4): 764-74.
doi: 10.1016/j.surg.2009.06.054 |
[25] |
Müller MC, Meijers JCM, Vroom MB, Juffermans NP. Utility of thromboelastography and/or thromboelastometry in adults with sepsis: a systematic review. Crit Care. 2014; 18(1): R30.
doi: 10.1186/cc13721 |
[26] |
Koami H, Sakamoto Y, Sakurai R, Ohta M, Imahase H, Yahata M, et al. Thromboelastometric analysis of the risk factors for return of spontaneous circulation in adult patients with out-of-hospital cardiac arrest. PLoS One. 2017; 12(4): e0175257.
doi: 10.1371/journal.pone.0175257 |
[27] |
Shin SM, Kim KS, Suh GJ, Kim K, Kwon WY, Shin J, et al. Prediction of neurological outcomes following the return of spontaneous circulation in patients with out-of-hospital cardiac arrest: retrospective fast-and-frugal tree analysis. Resuscitation. 2018; 133: 65-70.
doi: S0300-9572(18)30817-7 pmid: 30292802 |
[28] |
Whillier S, Lystad RP, El-Haddad J. Team-based learning in neuroanatomy. J Chiropr Educ. 2021; 35(2): 184-91.
doi: 10.7899/JCE-19-25 |
[29] |
Shida H, Matsuyama T, Iwami T, Okabayashi S, Yamada T, Hayakawa K, et al. Serum potassium level on hospital arrival and survival after out-of-hospital cardiac arrest: the CRITICAL study in Osaka, Japan. Eur Heart J Acute Cardiovasc Care. 2020; 9(4_suppl): S175-S183.
doi: 10.1177/2048872619848883 |
[30] |
Skorko A, Mumford A, Thomas M, Pickering AE, Greenwood R, Griffiths E, et al. Platelet dysfunction after out of hospital cardiac arrest. Results from POHCAR: a prospective observational, cohort study. Resuscitation. 2019; 136: 105-11.
doi: S0300-9572(18)30858-X pmid: 30716426 |
[31] |
Skorko A, Thomas M, Mumford A, Johnson T, Griffiths E, Greenwood R, et al. Research protocol for platelets in out-of-hospital cardiac arrest: an observational, case-controlled, feasibility study to assess coagulation and platelet function abnormalities with ROTEM following out-of-hospital cardiac arrest (PoHCAR). BMJ Open. 2017; 7(7): e015663.
doi: 10.1136/bmjopen-2016-015663 |
[1] | Esin Korkut, Ayhan Saritas, Yusuf Aydin, Semih Korkut, Hayati Kandis, Davut Baltaci. Suicidal ingestion of potassium permanganate [J]. World Journal of Emergency Medicine, 2013, 4(1): 73-74. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||