World Journal of Emergency Medicine ›› 2024, Vol. 15 ›› Issue (3): 223-228.doi: 10.5847/wjem.j.1920-8642.2024.037
• Research Letters • Previous Articles Next Articles
Ji Ho Lee1, Dong Hun Lee1,2(), Byung Kook Lee1,2, Seok Jin Ryu1
Received:
2023-11-06
Accepted:
2024-02-12
Online:
2024-05-15
Published:
2024-05-01
Contact:
Dong Hun Lee, Email: Ji Ho Lee, Dong Hun Lee, Byung Kook Lee, Seok Jin Ryu. The association between C-reactive protein to albumin ratio and 6-month neurological outcome in patients with in-hospital cardiac arrest[J]. World Journal of Emergency Medicine, 2024, 15(3): 223-228.
Add to citation manager EndNote|Ris|BibTeX
URL: http://wjem.com.cn/EN/10.5847/wjem.j.1920-8642.2024.037
Table 1.
Comparisons of baseline characteristics according to neurological outcomes at 6 months
Variables | Total (n=141) | Favorable (n=29) | Poor (n=112) | P-value |
---|---|---|---|---|
Demographics | ||||
Age, years | 68.0 (58.0-76.5) | 59.2 (52.0-70.5) | 70.0 (60.0-78.5) | 0.003 |
Male, n (%) | 84 (59.6) | 14 (48.3) | 70 (62.5) | 0.238 |
Body mass index, kg/m2 | 23.3 (20.7-26.0) | 23.4 (20.7-25.3) | 23.1 (20.6-26.0) | 0.925 |
Preexisting illness, n (%) | ||||
Coronary artery disease | 21 (14.9) | 3 (10.3) | 18 (16.1) | 0.632 |
Congestive heart failure | 27 (19.1) | 3 (10.3) | 24 (21.4) | 0.277 |
Hypertension | 84 (59.6) | 17 (58.6) | 67 (59.8) | 1.000 |
Diabetes | 55 (39.0) | 10 (34.5) | 45 (40.2) | 0.729 |
Chronic lung disease | 20 (14.2) | 5 (17.2) | 15 (13.4) | 0.817 |
Renal impairment | 26 (18.4) | 3 (10.3) | 23 (20.5) | 0.321 |
Liver cirrhosis | 4 (2.8) | 0 (0.0) | 4 (3.6) | 0.685 |
Cerebrovascular accident | 18 (12.8) | 2 (6.9) | 16 (14.3) | 0.453 |
Malignancy | 14 (9.9) | 5 (17.2) | 9 (8.0) | 0.259 |
Cardiac arrest characteristics | ||||
Witnessed collapse, n (%) | 120 (85.1) | 27 (93.1) | 93 (83.0) | 0.287 |
Shockable rhythm, n (%) | 34 (24.1) | 11 (37.9) | 23 (20.5) | 0.088 |
Presumed cardiac cause, n (%) | 56 (39.7) | 15 (51.7) | 41 (36.6) | 0.204 |
Time to ROSC, min | 15.0 (7.0-23.5) | 10.0 (5.0-15.0) | 15.0 (10.0-29.8) | 0.004 |
GO-FAR score | 6 (-4-13) | -3 (-11-3) | 9 (0-13) | <0.001 |
Clinical characteristics after ROSC | ||||
Lactate, mmol/L | 7.3 (4.0-12.5) | 7.4 (4.6-11.8) | 7.2 (3.9-13.3) | 0.712 |
Glucose, mg/dL | 204 (140-299) | 236 (145-312) | 203 (137-294) | 0.461 |
PaO2, mmHg | 178.0 (87.5-310.5) | 274.0 (114.0-363.0) | 144.0 (83.8-251.5) | 0.073 |
PaCO2, mmHg | 41.0 (29.0-58.0) | 41.0 (27.5-53.1) | 41.5 (29.0-58.0) | 0.394 |
CRP, mg/dL | 1.4 (0.2-8.6) | 0.2 (0.0-1.2) | 2.4 (0.4-10.8) | <0.001 |
Albumin, g/dL | 3.1 (2.6-3.4) | 3.4 (3.0-3.8) | 3.0 (2.5-3.3) | <0.001 |
CAR | 0.5 (0.1-3.0) | 0.0 (0.0-0.4) | 0.9 (0.1-3.5) | <0.001 |
Table 2.
Multivariate logistic regression analysis for poor neurological outcomes at 6 months
Variables | Unadjusted OR (95% CI) | P-value | Adjusted OR (95% CI) | P-value |
---|---|---|---|---|
Shockable rhythm | 0.423 (0.176-1.019) | 0.055 | 0.432 (0.116-1.611) | 0.211 |
Time to ROSC, min | 1.052 (1.006-1.099) | 0.025 | 1.084 (1.031-1.140) | 0.002 |
GO-FAR score | 1.134 (1.075-1.197) | <0.001 | 1.175 (1.096-1.261) | <0.001 |
PaO2, mmHg | 0.999 (0.996-1.002) | 0.083 | 0.997 (0.993-1.001) | 0.162 |
CAR | 1.804 (1.157-2.812) | 0.009 | 1.851 (1.213-2.824) | 0.004 |
Table 3.
ROC analysis of time to ROSC, GO-FAR score, and CAR for poor neurological outcomes at 6 months
Variables | AUC (95% CI) | P-value | Cutoff value | Sensitivity (95% CI) | Specificity (95% CI) | PPV (95% CI) | NPV (95% CI) |
---|---|---|---|---|---|---|---|
Time to ROSC, min | 0.672 (0.588-0.749) | 0.003 | >11 | 66.1 (56.5-74.7) | 62.1 (42.3-79.3) | 87.1 (80.6-91.6) | 32.1 (24.4-41.0) |
GO-FAR score | 0.789 (0.712-0.853) | <0.001 | >-1 | 75.9 (66.9-83.5) | 72.4 (52.8-87.3) | 91.4 (85.4-95.1) | 43.7 (34.3-53.7) |
CAR | 0.774 (0.696-0.840) | <0.001 | >0.1 | 73.2 (64.0-81.1) | 69.0 (49.2-84.7) | 90.1 (84.0-94.1) | 40.0 (31.1-49.7) |
CRP, mg/dL | 0.761 (0.682-0.829) | <0.001 | >0.6 | 65.2 (55.6-73.9) | 75.9 (56.5-89.7) | 91.3 (84.4-95.3) | 36.1 (28.9-43.9) |
Albumin, g/dL | 0.714 (0.632-0.787) | <0.001 | ≤3.3 | 79.5 (70.8-86.5) | 62.1 (42.3-79.3) | 89.0 (83.4-92.9) | 43.9 (33.0-55.4) |
1 | Penketh J, Nolan JP. In-hospital cardiac arrest: the state of the art. Crit Care. 2022; 26(1):376. |
2 | Girotra S, Nallamothu BK, Spertus JA, Li Y, Krumholz HM, Chan PS, et al. Trends in survival after in-hospital cardiac arrest. N Engl J Med. 2012; 367(20):1912-20. |
3 |
Ebell MH, Jang W, Shen Y, Geocadin RG, Investigators GWTG. Development and validation of the Good Outcome Following Attempted Resuscitation (GO-FAR) score to predict neurologically intact survival after in-hospital cardiopulmonary resuscitation. JAMA Intern Med. 2013; 173(20):1872-8.
doi: 10.1001/jamainternmed.2013.10037 pmid: 24018585 |
4 | Hong SI, Kim YJ, Cho YJ, Huh JW, Hong SB, Kim WY. Predictive value of pre-arrest albumin level with GO-FAR score in patients with in-hospital cardiac arrest. Sci Rep. 2021; 11(1):10631. |
5 | Du LF, Zheng K, Feng L, Cao Y, Niu ZD, Song ZJ, et al. The first national survey on practices of neurological prognostication after cardiac arrest in China, still a lot to do. Int J Clin Pract. 2021; 75(4):e13759. |
6 |
Nolan JP, Sandroni C, Böttiger BW, Cariou A, Cronberg T, Friberg H, et al. European Resuscitation Council and European Society of Intensive Care Medicine guidelines 2021: post-resuscitation care. Intensive Care Med. 2021; 47(4):369-421.
doi: 10.1007/s00134-021-06368-4 pmid: 33765189 |
7 | Xu CF, Huo MC, Huang JH, Liu CF, Xu W. Early changes in white blood cell, C-reactive protein and procalcitonin levels in children with severe multiple trauma. World J Emerg Med. 2022; 13(6):448-52. |
8 |
Dell’anna AM, Bini Viotti J, Beumier M, Orbegozo-Cortes D, Donadello K, Scolletta S, et al. C-reactive protein levels after cardiac arrest in patients treated with therapeutic hypothermia. Resuscitation. 2014; 85(7):932-8.
doi: 10.1016/j.resuscitation.2014.04.003 pmid: 24746786 |
9 |
Samborska-Sablik A, Sablik Z, Gaszynski W. The role of the immuno-inflammatory response in patients after cardiac arrest. Arch Med Sci. 2011; 7(4):619-26.
doi: 10.5114/aoms.2011.24131 pmid: 22291797 |
10 | Aguayo-Becerra OA, Torres-Garibay C, Macías-Amezcua MD, Fuentes-Orozco C, Chávez-Tostado MD, Andalón-Dueñas E, et al. Serum albumin level as a risk factor for mortality in burn patients. Clinics. 2013; 68(7):940-5. |
11 | Galata C, Busse L, Birgin E, Weiß C, Hardt J, Reißfelder C, et al. Role of albumin as a nutritional and prognostic marker in elective intestinal surgery. Can J Gastroenterol Hepatol. 2020; 2020:7028216. |
12 |
Ning PP, Yang BY, Yang XL, Huang HY, Shen QY, Zhao QZ, et al. Clinical value of C-reactive protein/albumin ratio in Guillain-Barré syndrome. Neurol Sci. 2021; 42(8): 3275-83.
doi: 10.1007/s10072-020-04930-4 pmid: 33247320 |
13 | Wang RR, He M, Ou XF, Xie XQ, Kang Y. CRP albumin ratio is positively associated with poor outcome in patients with traumatic brain injury. Clin Neurol Neurosurg. 2020; 195: 106051. |
14 | Karabağ Y, Çağdaş M, Rencuzogullari I, Karakoyun S, Artaç İ, İliş D, et al. Usefulness of the C-reactive protein/albumin ratio for predicting no-reflow in ST-elevation myocardial infarction treated with primary percutaneous coronary intervention. Eur J Clin Invest. 2018; 48(6):e12928. |
15 |
Kocatürk M, Kocatürk Ö. Assessment of relationship between C-reactive protein to albumin ratio and 90-day mortality in patients with acute ischaemic stroke. Neurol Neurochir Pol. 2019; 53(3):205-11.
doi: 10.5603/PJNNS.a2019.0020 pmid: 31145464 |
16 | Kim HH, Lee JH, Lee DH, Lee BK. Association between C-reactive protein-to-albumin ratio and 6-month mortality in out-of-hospital cardiac arrest. Acute Crit Care. 2022; 37(4):601-9. |
17 | Bingol Tanriverdi T, Patmano G, Bozkurt FT, Kaya BC, Tercan M. Prognostic value of C-reactive protein to albumin ratio in patients resuscitated from out-of-hospital cardiac arrest. Int J Clin Pract. 2021; 75(7):e14227. |
18 |
Booth CM, Boone RH, Tomlinson G, Detsky AS. Is this patient dead, vegetative, or severely neurologically impaired? Assessing outcome for comatose survivors of cardiac arrest. JAMA. 2004; 291(7):870-9.
doi: 10.1001/jama.291.7.870 pmid: 14970067 |
19 |
Widgerow AD. Ischemia-reperfusion injury: influencing the microcirculatory and cellular environment. Ann Plast Surg. 2014; 72(2):253-60.
doi: 10.1097/SAP.0b013e31825c089c pmid: 23241775 |
20 |
Uchino H, Ogihara Y, Fukui H, Chijiiwa M, Sekine S, Hara N, et al. Brain injury following cardiac arrest: pathophysiology for neurocritical care. J Intensive Care. 2016; 4:31.
doi: 10.1186/s40560-016-0140-9 pmid: 27123307 |
21 |
Annborn M, Dankiewicz J, Erlinge D, Hertel S, Rundgren M, Smith JG, et al. Procalcitonin after cardiac arrest - an indicator of severity of illness, ischemia-reperfusion injury and outcome. Resuscitation. 2013; 84(6):782-7.
doi: 10.1016/j.resuscitation.2013.01.004 pmid: 23313427 |
22 |
Shinada K, Koami H, Matsuoka A, Sakamoto Y. Prediction of return of spontaneous circulation in out-of-hospital cardiac arrest with non-shockable initial rhythm using point-of-care testing: a retrospective observational study. World J Emerg Med. 2023; 14(2):89-95.
doi: 10.5847/wjem.j.1920-8642.2023.031 pmid: 36911060 |
23 |
Schriefl C, Schoergenhofer C, Poppe M, Clodi C, Mueller M, Ettl F, et al. Admission C-reactive protein concentrations are associated with unfavourable neurological outcome after out-of-hospital cardiac arrest. Sci Rep. 2021; 11(1):10279.
doi: 10.1038/s41598-021-89681-8 pmid: 33986392 |
24 | Mouliou DS. C-reactive protein: pathophysiology, diagnosis, false test results and a novel diagnostic algorithm for clinicians. Diseases. 2023; 11(4):132. |
25 |
Cole DS, Watts A, Scott-Coombes D, Avades T. Clinical utility of peri-operative C-reactive protein testing in general surgery. Ann R Coll Surg Engl. 2008; 90(4):317-21.
doi: 10.1308/003588408X285865 pmid: 18492397 |
26 | Ahmad R, Bhatti KM, Ahmed M, Malik KA, Rehman S, Abdulgader A, et al. C-reactive protein as a predictor of complicated acute pancreatitis: reality or a myth? Cureus. 2021; 13(11):e19265. |
27 |
Anraku M, Shintomo R, Taguchi K, Kragh-Hansen U, Kai T, Maruyama T, et al. Amino acids of importance for the antioxidant activity of human serum albumin as revealed by recombinant mutants and genetic variants. Life Sci. 2015; 134:36-41.
doi: 10.1016/j.lfs.2015.05.010 pmid: 26032253 |
28 | Ezra A, Rabinovich-Nikitin I, Rabinovich-Toidman P, Solomon B. Multifunctional effect of human serum albumin reduces Alzheimer’s disease related pathologies in the 3xTg mouse model. J Alzheimers Dis. 2016; 50(1):175-88. |
29 | Yoon H, Song KJ, Shin SD, Ro YS, Hong KJ, Park JH. Effect of serum albumin level on hospital outcomes in out-of-hospital cardiac arrest. Hong Kong J Emerg Med. 2020; 27:293-9. |
30 |
Kong T, Chung SP, Lee HS, Kim S, Lee J, Hwang SO, et al. The prognostic usefulness of the lactate/albumin ratio for predicting clinical outcomes in out-of-hospital cardiac arrest: a prospective, multicenter observational study (koCARC) study. Shock. 2020; 53(4):442-51.
doi: 10.1097/SHK.0000000000001405 pmid: 31306348 |
31 |
You Y, Park J, Min J, Yoo I, Jeong W, Cho Y, et al. Relationship between time related serum albumin concentration, optic nerve sheath diameter, cerebrospinal fluid pressure, and neurological prognosis in cardiac arrest survivors. Resuscitation. 2018; 131:42-7.
doi: S0300-9572(18)30719-6 pmid: 30086374 |
32 | Haschemi J, Müller CT, Haurand JM, Oehler D, Spieker M, Polzin A, et al. Lactate to albumin ratio for predicting clinical outcomes after in-hospital cardiac arrest. J Clin Med. 2023; 12(12):4136. |
33 | Zhang RM, Tan K, Fu S, Deng JK. Limited value of procalcitonin, C-reactive protein, white blood cell, and neutrophil in detecting bacterial coinfection and guiding antibiotic use among children with enterovirus infection. World J Pediatr. 2022; 18(3):230-3. |
34 | Du Y, Zhang J, Li N, Guo JH, Liu XM, Bian LH, et al. Association between the C-reactive protein to albumin ratio and adverse clinical prognosis in patients with young stroke. Front Neurol. 2022; 13:989769. |
35 | Park JE, Chung KS, Song JH, Kim SY, Kim EY, Jung JY, et al. The C-reactive protein/albumin ratio as a predictor of mortality in critically ill patients. J Clin Med. 2018; 7(10):333. |
36 | Chen CT, Chen CH, Chen TY, Yen DHT, How CK, Hou PC. Comparison of in-hospital and out-of-hospital cardiac arrest patients receiving targeted temperature management: a matched case-control study. J Chin Med Assoc. 2020; 83(9):858-64. |
37 | Zhou X, Fu SZ, Wu YS, Guo ZH, Dian WK, Sun HB, et al. C-reactive protein-to-albumin ratio as a biomarker in patients with sepsis: a novel LASSO-COX based prognostic nomogram. Sci Rep. 2023; 13(1):15309. |
38 | Blanc A, Colin G, Cariou A, Merdji H, Grillet G, Girardie P, et al. Targeted temperature management after in-hospital cardiac arrest: an ancillary analysis of targeted temperature management for cardiac arrest with nonshockable rhythm trial data. Chest. 2022; 162(2):356-66. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||