1Department of Emergency Medicine, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China 2Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, Hangzhou 310003, China
Cong-ying Song, Jian-yong Zhu, Wei Huang, Yuan-qiang Lu. Development and validation of a predictive model for the assessment of potassium-lowering treatment among hyperkalemia patients[J]. World Journal of Emergency Medicine, 2023, 14(3): 198-203.
Demographic and clinical characteristics of patients enrolled in the training dataset
Demographic and clinical characteristics
All patients (n=818)
Effective group (n=429)
Ineffective group (n=389)
P-value
Age, years
65.0 (53.0-77.0)
63.0 (52.0-74.5)
67.0 (55.0-77.0)
0.007
Sex
0.456
Male
528 (64.5)
282 (65.7)
246 (63.2)
Female
290 (35.5)
147 (34.3)
143 (36.8)
Basic vital signs
Temperature, ℃
36.6 (36.2-37.0)
36.7 (36.3-37.0)
36.5 (36.1-37.0)
0.014
Oxygen saturation, %
99.0 (97.0-100.0)
99.0 (98.0-100.0)
99.0 (97.0-100.0)
0.050
Respiratory rate, breaths/min
20.0 (19.0-20.0)
20.0 (19.0-20.0)
20.0 (20.0-21.0)
0.004
Heart rate, beats/min
85.0 (73.0-100.0)
85.0 (74.0-98.0)
86.0 (72.5-100.0)
0.890
Mean arterial pressure, mmHg
96.0 (83.3-109.0)
95.0 (83.3-108.0)
97.0 (82.7-110.3)
0.506
Comordities
Diabetes mellitus
245 (30.0)
122 (28.4)
123 (31.6)
0.321
Hypertension
549 (67.1)
272 (63.4)
277 (71.2)
0.018
Chronic liver disease
102 (12.5)
51 (11.9)
51 (13.1)
0.597
Rheumatism
152 (18.6)
84 (19.6)
68 (17.5)
0.441
History of kidney transplantation
72 (8.8)
27 (6.3)
45 (11.6)
0.008
Tumor
149 (18.2)
73 (17)
76 (19.5)
0.351
Chronic renal disease
512 (62.6)
256 (59.7)
256 (65.8)
0.070
ESRD a
191 (23.3)
84 (19.6)
107 (27.5)
0.007
Recent use of hyperkalemia-causing drugs
310 (37.9)
155 (36.1)
155 (39.8)
0.274
Symptoms
Peripheral edema
222 (27.1)
89 (20.7)
133 (34.2)
<0.001
Oliguria
157 (19.2)
63 (14.7)
94 (24.2)
0.001
Laboratory tests
Red blood cell count, ×109/L
3.4 (2.6-4.0)
3.4 (2.7-4.0)
3.4 (2.6-4.0)
0.926
Hemoglobin, g/L
99.0 (79.0-116.0)
100.0 (81.0-118.0)
99.0 (78.0-115.0)
0.554
Platelet count, ×109/L
192.5 (136.0-248.0)
192.0 (133.0-240.5)
193.0 (138.0-257.5)
0.298
Uric acid, μmol/L
467.5 (362.8-579.3)
461.0 (362.5-583.5)
469.0 (363.0-574.0)
0.885
Creatinine, μmol/L
363.5 (175.0-686.3)
354.0 (174.0-571.5)
372.0 (175.5-720.5)
0.447
Urea nitrogen, mmol/L
22.4 (15.4-31.5)
21.4 (15.3-31.6)
23.5 (15.5-31.5)
0.316
eGFR, mL/min
14.4 (6.5-29.8)
15.4 (6.7-29.6)
13.3 (6.0-30.3)
0.353
Na+, mmol/L
138.0 (134.0-141.0)
138.0 (134.0-141.0)
138.0 (134.0-141.0)
0.603
Cl-, mmol/L
102.0 (97.0-107.0)
102.0 (97.0-107.0)
102.8 (97.5-107.0)
0.603
pH
7.35 (7.33-7.40)
7.35 (7.33-7.40)
7.35 (7.33-7.39)
0.423
PaO2, mmHg
98.3 (78.2-111.0)
98.7 (79.5-112.5)
98.0 (75.3-110.0)
0.475
PaCO2, mmHg
34.9 (30.7-37.9)
34.9 (31.2-38.5)
34.8 (30.0-37.7)
0.479
HCO3-, mmol/L
19.3 (17.4-22.0)
19.3 (17.5-22.2)
19.2 (17.3-21.9)
0.619
Lactic acid, mmol/L
2.0 (1.1-2.5)
2.0 (1.2-2.6)
1.9 (1.0-2.4)
0.007
Table 1.
Figure 1.
Treatments of hyperkalemic patients. A: serum potassium levels of hyperkalemic patients between the effective and ineffective groups; B: proportion of patients receiving each therapeutic regimen; C-F: the dosages of insulin, furosemide, sodium bicarbonate, and calcium gluconate used for hyperkalemic patients in the effective and ineffective groups.
Figure 1.
Figure 2.
Validation of the predictive model for assessing the effect of potassium-lowering treatment. A, B: ROC curve of the predictive model; the AUC showed that this predictive model had a quite good discriminative capacity; C, D: calibration curve of the predictive model. The Y-axis represents the actual number of patients with effective potassium-lowering treatment; the X-axis represents the predicted number of patients with effective potassium-lowering treatment. The orange line represents a perfect prediction by an ideal model. The blue line represents the performance of the novel model, of which a closer fit to the orange line represents a better prediction. ROC: receiver operating characteristic; AUC: area under the curve; 95% CI: 95% confidence interval.
Montford JR, Linas S. How dangerous is hyperkalemia? J Am Soc Nephrol. 2017; 28(11):3155-65.
doi: 10.1681/ASN.2016121344
pmid: 28778861
[2]
Sood MM, Sood AR, Richardson R. Emergency management and commonly encountered outpatient scenarios in patients with hyperkalemia. Mayo Clin Proc. 2007; 82(12):1553-61.
[3]
An JN, Lee JP, Jeon HJ, Kim DH, Oh YK, Kim YS, et al. Severe hyperkalemia requiring hospitalization: predictors of mortality. Crit Care. 2012; 16(6):R225.
doi: 10.1186/cc11872
[4]
Khanagavi J, Gupta T, Aronow WS, Shah T, Garg J, Ahn C, et al. Hyperkalemia among hospitalized patients and association between duration of hyperkalemia and outcomes. Arch Med Sci. 2014; 10(2):251-7.
doi: 10.5114/aoms.2014.42577
pmid: 24904657
[5]
McMahon GM, Mendu ML, Gibbons FK, Christopher KB. Association between hyperkalemia at critical care initiation and mortality. Intensive Care Med. 2012; 38(11):1834-42.
doi: 10.1007/s00134-012-2636-7
pmid: 22806439
[6]
Kovesdy CP. Management of hyperkalaemia in chronic kidney disease. Nat Rev Nephrol. 2014; 10(11):653-62.
doi: 10.1038/nrneph.2014.168
pmid: 25223988
[7]
Einhorn LM, Zhan M, Hsu VD, Walker LD, Moen MF, Seliger SL, et al. The frequency of hyperkalemia and its significance in chronic kidney disease. Arch Intern Med. 2009; 169(12):1156-62.
doi: 10.1001/archinternmed.2009.132
pmid: 19546417
[8]
Sarafidis PA, Blacklock R, Wood E, Rumjon A, Simmonds S, Fletcher-Rogers J, et al. Prevalence and factors associated with hyperkalemia in predialysis patients followed in a low-clearance clinic. Clin J Am Soc Nephrol. 2012; 7(8):1234-41.
doi: 10.2215/CJN.01150112
[9]
Palmer BF. Managing hyperkalemia caused by inhibitors of the renin-angiotensin-aldosterone system. N Engl J Med. 2004; 351(6):585-92.
doi: 10.1056/NEJMra035279
[10]
Lu X, Yang YM, Lu YQ. Immunosenescence: a critical factor associated with organ injury after sepsis. Front Immunol. 2022; 13:917293.
doi: 10.3389/fimmu.2022.917293
[11]
Fissell R, Hakim RM. Improving outcomes by changing hemodialysis practice patterns. Curr Opin Nephrol Hypertens. 2013; 22(6):675-80.
doi: 10.1097/MNH.0b013e328365b34c
[12]
Tang X, Chen D, Zhang L, Fu P, Chen Y, Xiao Z, et al. Application of regional citrate anticoagulation in patients at high risk of bleeding during intermittent hemodialysis: a prospective multicenter randomized controlled trial. J Zhejiang Univ Sci B. 2022; 23(11):931-42.
doi: 10.1631/jzus.B2200082
[13]
Palmer BF, Clegg DJ. Diagnosis and treatment of hyperkalemia. Cleve Clin J Med. 2017; 84(12):934-42.
doi: 10.3949/ccjm.84a.17056
[14]
Li Y, Xu R, Cao CS, Huang L. The successful use of extracorporeal membrane oxygenation combined with continuous renal replacement therapy for a cardiac arrest patient with refractory hypokalemia and diabetic ketoacidosis. World J Emerg Med. 2022; 13(4):337-40.
doi: 10.5847/wjem.j.1920-8642.2022.066
pmid: 35837568