Sign In    Register

World Journal of Emergency Medicine ›› 2010, Vol. 1 ›› Issue (3): 216-223.

• Original Articles • Previous Articles     Next Articles

Autophagy inhibitor 3-methyladenine regulates the expression of LC3, Beclin-1 and ZnTs in rat cerebral cortex following recurrent neonatal seizures

Hong Ni(), Yong Gong, Jian-zhen Yan, Le-ling Zhang   

  1. Neurology Laboratory, Soochow University Affiliated Children's Hospital; Laboratory of Aging and Nervous Diseases, Soochow University, Suzhou 215003, China
  • Received:2010-05-16 Accepted:2010-09-23 Online:2010-09-15 Published:2010-09-15
  • Contact: Hong Ni E-mail:nyr2000@yeah.net;nhdoctor@163.com

Abstract:

BACKGROUND: Autophagy is a homeostatic process for intracellular recycling of bulk proteins and aging organelles. Increased autophagy has now been reported in experimental models of traumatic brain injury, stroke and excitotoxicity, and in patients with Alzheimer's disease and critical illness. The role of autophagy in developmental epilepsy, however, is unknown. The present study was to investigate the effects of recurrent neonatal seizure, in the presence and absence of autophagy inhibitor 3-methyladenine (3-MA), on the acute phase gene expression of ZnTs, LC3 and Beclin-1 in rat cerebral cortex and the interaction among them.

METHODS: Thirty-six Sprague-Dawley neonatal rats at postnatal day 6(P6) were randomly divided into three groups: a recurrent-seizures group (RS, n=12), a 3-MA treated-seizure group (3-MA group, each rat pretreated with 3-methyladenine before seizures, 100nmol/μl/day, i.p., n=12) and a control group (n=12). At 1.5 and 6 hours after the last seizures, the mRNA levels of ZnT1-ZnT3, microtubule-associated protein 1A/1B light chain 3 (LC3) and beclin-1 were detected using the real-time RT-PCR method. The LC3 protein level was examined by Western blotting.

RESULTS: The levels of LC3, beclin-1 and ZnT-2 transcripts in the RS group elevated significantly at 1.5 and 6 hours after the last seizures compared with those in the control and 3-MA groups. At the interval of 1.5 hours, the mRNA level of ZnT-1 increased significantly after the last seizure compared with that in the control group. There was no significant difference in the transcript levels of ZnT-3 among the three groups. Linear correlation analysis showed that the expression of the five genes in the control group exhibited a significant inter-relationship. In the 3-MA group, however, the inter-relationship was only found between beclin-1 and ZnT-1. In the RS group, the inter-relationship was not observed.

CONCLUSIONS: The autophagy/lysosomal pathway is immediately activated along with the elevated expression of ZnT1 and ZnT2 in the cerebral cortex after recurrent seizures. 3-MA is involved in the regulation of the autophagy/lysosomal pathway and ZnTs by down-regulating the expression of LC3 and beclin-1.

Key words: Zinc transporter 1, Zinc transporter 3, LC3, Beclin-1, Seizure