World Journal of Emergency Medicine ›› 2012, Vol. 3 ›› Issue (3): 165-171.doi: 10.5847/wjem.j.issn.1920-8642.2012.03.001
• Review Article • Next Articles
Li-feng Huang, Yong-ming Yao(), Zhi-yong Sheng
Received:
2012-03-02
Accepted:
2012-07-13
Online:
2012-09-15
Published:
2012-09-15
Contact:
Yong-ming Yao
E-mail:c_ff@sina.com
Li-feng Huang, Yong-ming Yao, Zhi-yong Sheng. Novel insights for high mobility group box 1 protein-mediated cellular immune response in sepsis:A systemic review[J]. World Journal of Emergency Medicine, 2012, 3(3): 165-171.
Add to citation manager EndNote|Ris|BibTeX
URL: http://wjem.com.cn//EN/10.5847/wjem.j.issn.1920-8642.2012.03.001
1 |
Marik PE. Surviving sepsis: going beyond the guidelines. Ann Intensive Care 2011; 1:17.
doi: 10.1186/2110-5820-1-17 pmid: 21906348 |
2 |
Adib-Conquy M, Cavaillon JM. Compensatory anti-inflammatory response syndrome. Thromb Haemost 2009; 101:36-47.
pmid: 19132187 |
3 |
Silva E, Passos Rda H, Ferri MB, de Figueiredo LF. Sepsis: from bench to bedside. Clinics 2008; 63:109-120.
doi: 10.1590/s1807-59322008000100019 pmid: 18297215 |
4 |
Delsesto D, Opal SM. Future perspectives on regulating pro-and anti-inflammatory responses in sepsis. Contrib Microbiol 2011; 17:137-156.
pmid: 21659751 |
5 |
LaRosa SP, Opal SM. Sepsis strategies in development. Clin Chest Med 2008; 29:735-747.
doi: 10.1016/j.ccm.2008.06.007 pmid: 18954707 |
6 |
Wang H, Bloom O, Zhang M, Vishnubhakat JM, Ombrellino M, Che J. et al. HMG-1 as a late mediator of endotoxin lethality in mice. Science 1999; 285:248-251.
doi: 10.1126/science.285.5425.248 pmid: 10398600 |
7 |
Ombrellino M, Wang H, Ajemian MS, Talhouk A, Scher LA, Friedman SG. et al. Increased serum concentrations of high-mobility-group protein 1 in haemorrhagic shock. Lancet 1999; 354:1446-1447.
doi: 10.1016/S0140-6736(99)02658-6 pmid: 10543678 |
8 |
Wang H, Vishnubhakat JM, Bloom O, Zhang M, Ombrellino M, Sama A. et al. Proinflammatory cytokines (tumor necrosis factor and interleukin 1) stimulate release of high mobility group protein-1 by pituicytes. Surgery 1999; 126:389-392.
pmid: 10455911 |
9 |
Vande Walle L, Kanneganti TD, Lamkanfi M. HMGB1 release by inflammasomes. Virulence 2011; 2:162-165.
pmid: 21422809 |
10 |
Andersson U, Tracey KJ. HMGB1 is a therapeutic target for sterile inflammation and infection. Annu Rev Immunol 2011; 29:139-162.
doi: 10.1146/annurev-immunol-030409-101323 pmid: 21219181 |
11 |
Pisetsky DS, Gauley J, Ullal AJ. HMGB1 and microparticles as mediators of the immune response to cell death. Antioxid Redox Signal 2011; 15:2209-2219.
pmid: 21194388 |
12 |
Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W. et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 2010; 464:104-107.
doi: 10.1038/nature08780 pmid: 20203610 |
13 |
Zhang LT, Yao YM, Dong YQ, Dong N, Yu Y, Sheng ZY. Relationship between high-mobility group box 1 protein release and T-cell suppression in rats after thermal injury. Shock 2008; 30:449-455.
doi: 10.1097/SHK.0b013e3181672495 pmid: 18277947 |
14 |
Liu Z, Falo LD Jr, You Z. Knockdown of HMGB1 in tumor cells attenuates their ability to induce regulatory T cells and uncovers naturally acquired CD8 T cell-dependent antitumor immunity. J Immunol 2011; 187:118-125.
doi: 10.4049/jimmunol.1003378 pmid: 21642542 |
15 |
Dumitriu IE, Bianchi ME, Bacci M, Manfredi AA, Rovere-Querini P. The secretion of HMGB1 is required for the migration of maturing dendritic cells. J Leukoc Biol 2007; 81:84-91.
doi: 10.1189/jlb.0306171 pmid: 17035340 |
16 |
Friggeri A, Yang Y, Banerjee S, Park YJ, Liu G, Abraham E. HMGB1 inhibits macrophage activity in efferocytosis through binding to the alphavbeta3-integrin. Am J Physiol Cell Physiol 2010; 299:C1267-1276.
pmid: 20826760 |
17 |
Gougeon ML, Bras M. Natural killer cells, dendritic cells, and the alarmin high-mobility group box 1 protein: a dangerous trio in HIV-1 infection? Curr Opin HIV AIDS 2011; 6:364-372.
doi: 10.1097/COH.0b013e328349b089 pmid: 21825870 |
18 |
Willenbrock S, Braun O, Baumgart J, Lange S, Junghanss C, Heisterkamp A. et al. TNF-α induced secretion of HMGB1 from non-immune canine mammary epithelial cells (MTH53A). Cytokine 2012; 57:210-220.
doi: 10.1016/j.cyto.2011.11.011 pmid: 22154216 |
19 |
Wähämaa H, Schierbeck H, Hreggvidsdottir HS, Palmblad K, Aveberger AC, Andersson U. et al. High mobility group box protein 1 in complex with lipopolysaccharide or IL-1 promotes an increased inflammatory phenotype in synovial fibroblasts. Arthritis Res Ther 2011; 13:R136.
doi: 10.1186/ar3450 pmid: 21871094 |
20 |
Kasten KR, Tschöp J, Adediran SG, Hildeman DA, Caldwell CC. T cells are potent early mediators of the host response to sepsis. Shock 2010; 34:327-336.
doi: 10.1097/SHK.0b013e3181e14c2e pmid: 20386500 |
21 |
Vollmar B. Pathophysiological basis of surgery-linked sepsis. Chirurg 2011; 82:199-207.
doi: 10.1007/s00104-010-2010-7 pmid: 21249327 |
22 |
Dong N, Jin BQ, Yao YM, Yu Y, Cao YJ, He LX. et al. Change in T cell-mediated immunity and its relationship with high mobility group box-1 protein levels in extensively burned patients. Zhonghua Wai Ke Za Zhi 2008; 46:759-762.
pmid: 18953932 |
23 |
Park JS, Arcaroli J, Yum HK, Yang H, Wang H, Yang KY. et al. Activation of gene expression in human neutrophils by high mobility group box 1 protein. Am J Physiol Cell Physiol 2003; 284:C870-879.
doi: 10.1152/ajpcell.00322.2002 pmid: 12620891 |
24 |
Hiraki S, Ono S, Tsujimoto H, Kinoshita M, Takahata R, Miyazaki H. et al. Neutralization of interleukin-10 or transforming growth factor-β decreases the percentages of CD4+CD25+Foxp3+ regulatory T cells in septic mice, thereby leading to an improved survival . Surgery 2012; 151:313-322.
doi: 10.1016/j.surg.2011.07.019 pmid: 21982068 |
25 |
Zhang Y, Yao YM, Huang LF, Dong N, Yu Y, Sheng ZY. The potential effect and mechanism of high-mobility group box 1 protein on regulatory T cell-mediated immunosuppression. J Interferon Cytokine Res 2011; 31:249-257.
doi: 10.1089/jir.2010.0019 pmid: 21087077 |
26 |
Huang LF, Yao YM, Zhang LT, Dong N, Yu Y, Sheng ZY. The effect of high-mobility group box 1 protein on activity of regulatory T cells after thermal injury in rats. Shock 2009; 31:322-329.
doi: 10.1097/SHK.0b013e3181834070 pmid: 18665051 |
27 |
Wang LW, Chen H, Gong ZJ. High mobility group box-1 protein inhibits regulatory T cell immune activity in liver failure in patients with chronic hepatitis B. Hepatobiliary Pancreat Dis Int 2010; 9:499-507.
pmid: 20943459 |
28 |
Mohr A, Polz J, Martin EM, Griessl S, Kammler A, Pötschke C. et al. Sepsis leads to a reduced antigen-specific primary antibody response. Eur J Immunol 2012; 42:341-352.
doi: 10.1002/eji.201141692 pmid: 22105154 |
29 |
Yang D, Chen Q, Yang H, Tracey KJ, Bustin M, Oppenheim JJ. High mobility group box-1 protein induces the migration and activation of human dendritic cells and acts as an alarmin. J Leukoc Biol 2007; 81:59-66.
doi: 10.1189/jlb.0306180 pmid: 16966386 |
30 |
Tsung A, Zheng N, Jeyabalan G, Izuishi K, Klune JR, Geller DA. et al. Increasing numbers of hepatic dendritic cells promote HMGB1-mediated ischemia-reperfusion injury. J Leukoc Biol 2007; 81:119-128.
doi: 10.1189/jlb.0706468 pmid: 17062605 |
31 |
Zhang LT, Yao YM, Yao FH, Huang LF, Dong N, Yu Y. et al. Association between high-mobility group box-1 protein release and immune function of dendritic cells in thermal injury. J Interferon Cytokine Res 2010; 30:487-495.
doi: 10.1089/jir.2009.0055 pmid: 20233162 |
32 |
Zhu XM, Yao FH, Yao YM, Dong N, Yu Y, Sheng ZY. Endoplasmic reticulum stress and its regulator XBP-1 contributes to dendritic cell maturation and activation induced by high mobility group box-1 protein. Int J Biochem Cell Biol 2012; 44:1097-1105.
doi: 10.1016/j.biocel.2012.03.018 pmid: 22504285 |
33 |
Liu QY, Yao YM, Yan YH, Dong N, Sheng ZY. High mobility group box 1 protein suppresses T cell-mediated immunity via CD11clowCD45RBhigh dendritic cell differentiation . Cytokine 2011; 54:205-211.
doi: 10.1016/j.cyto.2011.01.008 pmid: 21296590 |
34 |
Liu G, Wang J, Park YJ, Tsuruta Y, Lorne EF, Zhao X. et al. High mobility group protein-1 inhibits phagocytosis of apoptotic neutrophils through binding to phosphatidylserine. J Immunol 2008; 181:4240-4246.
doi: 10.4049/jimmunol.181.6.4240 pmid: 18768881 |
35 | Andersson U, Wang H, Palmblad K, Aveberger AC, Bloom O, Erlandsson-Harris H. et al. High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. J Exp Med 2000; 192:565-570. |
36 |
Kawahara K, Biswas KK, Unoshima M, Ito T, Kikuchi K, Morimoto Y. et al. C-reactive protein induces high-mobility group box-1 protein release through activation of p38 MAPK in macrophage RAW264.7 cells. Cardiovasc Pathol 2008; 17:129-138.
doi: 10.1016/j.carpath.2007.08.006 pmid: 18402807 |
37 |
Leung B, Harris HW. NKT cells: the culprits of sepsis? J Surg Res 2011; 167:87-95.
doi: 10.1016/j.jss.2010.09.038 pmid: 21035139 |
38 |
Barkhausen T, Frerker C, Pütz C, Pape HC, Krettek C, van Griensven M. Depletion of NK cells in a murine polytrauma model is associated with improved outcome and a modulation of the inflammatory response. Shock 2008; 30:401-410.
pmid: 18391857 |
39 |
Giardino Torchia ML, Ciaglia E, Masci AM, Vitiello L, Fogli M. et al. Dendritic cells/natural killer cross-talk: a novel target for human immunodeficiency virus type-1 protease inhibitors. PLoS One 2010; 5:e11052.
doi: 10.1371/journal.pone.0011052 pmid: 20548796 |
40 |
Semino C, Ceccarelli J, Lotti LV, Torrisi MR, Angelini G, Rubartelli A. The maturation potential of NK cell clones toward autologous dendritic cells correlates with HMGB1 secretion. J Leukoc Biol 2007; 81:92-99.
pmid: 16997859 |
41 |
Campana L, Bosurgi L, Bianchi ME, Manfredi AA, Rovere-Querini P. Requirement of HMGB1 for stromal cell-derived factor-1/CXCL12-dependent migration of macrophages and dendritic cells. J Leukoc Biol 2009; 86:609-615.
doi: 10.1189/jlb.0908576 pmid: 19414537 |
42 |
Klune JR, Dhupar R, Cardinal J, Billiar TR, Tsung A. HMGB1: endogenous danger signaling. Mol Med 2008; 14:476-484.
doi: 10.2119/2008-00034.Klune pmid: 18431461 |
43 |
Xu D, Young J, Song D, Esko JD. Heparan sulfate is essential for high mobility group protein 1 (HMGB1) signaling by the receptor for advanced glycation end products (RAGE). J Biol Chem 2011; 286:41736-41744.
doi: 10.1074/jbc.M111.299685 pmid: 21990362 |
44 |
Riuzzi F, Sorci G, Donato R. The amphoterin (HMGB1)/receptor for advanced glycation end products (RAGE) pair modulates myoblast proliferation, apoptosis, adhesiveness, migration, and invasiveness. Functional inactivation of RAGE in L6 myoblasts results in tumor formation in vivo. J Biol Chem 2006; 281:8242-8253.
doi: 10.1074/jbc.M509436200 pmid: 16407300 |
45 |
Kim SW, Lim CM, Kim JB, Shin JH, Lee S, Lee M. et al. Extracellular HMGB1 released by NMDA treatment confers neuronal apoptosis via RAGE-p38 MAPK/ERK signaling pathway. Neurotox Res 2011; 20:159-169.
doi: 10.1007/s12640-010-9231-x pmid: 21116767 |
46 |
Raman KG, Sappington PL, Yang R, Levy RM, Prince JM, Liu S. et al. The role of RAGE in the pathogenesis of intestinal barrier dysfunction after hemorrhagic shock. Am J Physiol Gastrointest Liver Physiol 2006; 291:G556-565.
doi: 10.1152/ajpgi.00055.2006 pmid: 16751175 |
47 |
Soro-Paavonen A, Watson AM, Li J, Paavonen K, Koitka A, Calkin AC. et al. Receptor for advanced glycation end products (RAGE) deficiency attenuates the development of atherosclerosis in diabetes. Diabetes 2008; 57:2461-2469.
doi: 10.2337/db07-1808 pmid: 18511846 |
48 |
Dumitriu IE, Baruah P, Valentinis B, Voll RE, Herrmann M, Nawroth PP. et al. Release of high mobility group box 1 by dendritic cells controls T cell activation via the receptor for advanced glycation end products. J Immunol 2005; 174:7506-7515.
doi: 10.4049/jimmunol.174.12.7506 pmid: 15944249 |
49 |
Manfredi AA, Capobianco A, Esposito A, De Cobelli F, Canu T, Monno A. et al. Maturing dendritic cells depend on RAGE for in vivo homing to lymph nodes. J Immunol 2008; 180:2270-2275.
doi: 10.4049/jimmunol.180.4.2270 pmid: 18250435 |
50 |
Velegraki M, Koutala H, Tsatsanis C, Papadaki HA. Increased levels of the high mobility group box 1 protein sustain the inflammatory bone marrow microenvironment in patients with chronic idiopathic neutropenia via activation of Toll-like receptor 4. J Clin Immunol 2012; 32:312-322.
doi: 10.1007/s10875-011-9620-9 pmid: 22127462 |
51 |
Yang H, Hreggvidsdottir HS, Palmblad K, Wang H, Ochani M, Li J. et al. A critical cysteine is required for HMGB1 binding to Toll-like receptor 4 and activation of macrophage cytokine release. Proc Natl Acad Sci U S A 2010; 107:11942-11947.
doi: 10.1073/pnas.1003893107 pmid: 20547845 |
52 |
Zhu XM, Yao YM, Liang HP, Xu CT, Dong N, Yu Y. et al. High mobility group box-1 protein regulate immunosuppression of regulatory T cells through Toll-like receptor 4. Cytokine 2011; 54:296-304.
doi: 10.1016/j.cyto.2011.02.017 pmid: 21419643 |
53 |
Dumitriu IE, Baruah P, Bianchi ME, Manfredi AA, Rovere-Querini P. Requirement of HMGB1 and RAGE for the maturation of human plasmacytoid dendritic cells. Eur J Immunol 2005; 35:2184-2190.
doi: 10.1002/eji.200526066 pmid: 15915542 |
54 |
Yang H, Ochani M, Li J, Qiang X, Tanovic M, Harris HE. et al. Reversing established sepsis with antagonists of endogenous high-mobility group box 1. Proc Natl Acad Sci U S A 2004; 101:296-301.
doi: 10.1073/pnas.2434651100 pmid: 14695889 |
55 |
Kao KK, Fink MP. The biochemical basis for the anti-inflammatory and cytoprotective actions of ethyl pyruvate and related compounds. Biochem Pharmacol 2010; 80:151-159.
doi: 10.1016/j.bcp.2010.03.007 pmid: 20230800 |
56 | 56 Wu CX, Sun H, Liu Q, Guo H, Gong JP. LPS induces HMGB1 relocation and release by activating the NF-κB-CBP signal transduction pathway in the murine macrophage-like cell line RAW264.7. J Surg Res 2011 Mar 17 2011 Mar 17. [epub ahead of print] |
57 |
Hagiwara S, Iwasaka H, Matumoto S, Noguchi T. Nafamostat mesilate inhibits high-mobility group box 1 by lipopolysaccharide stimulation in murine macrophage RAW 264.7. Shock 2007; 27:429-435.
doi: 10.1097/01.shk.0000239778.25775.ad pmid: 17414427 |
58 |
Schierbeck H, Lundbäck P, Palmblad K, Klevenvall L, Erlandsson-Harris H, Andersson U. et al. Monoclonal anti-HMGB1 (high mobility group box chromosomal protein 1) antibody protection in two experimental arthritis models. Mol Med 2011; 17:1039-1044.
doi: 10.2119/molmed.2010.00264 pmid: 21666956 |
[1] | Jun Yin, Yao Chen, Jun-ling Huang, Lei Yan, Zhong-shu Kuang, Ming-ming Xue, Si Sun, Hao Xiang, Yan-yan Hu, Zhi-min Dong, Chao-yang Tong, Chun-xue Bai, Zhen-ju Song. Prognosis-related classification and dynamic monitoring of immune status in patients with sepsis: A prospective observational study [J]. World Journal of Emergency Medicine, 2021, 12(3): 185-191. |
[2] | Li-wei Duan, Jin-long Qu, Jian Wan, Yong-hua Xu, Yi Shan, Li-xue Wu, Jin-hao Zheng, Wei-wei Jiang, Qi-tong Chen, Yan Zhu, Jian Zhou, Wen-bo Yu, Lei Pei, Xi Song, Wen-fang Li, Zhao-fen Lin. Effects of viral infection and microbial diversity on patients with sepsis: A retrospective study based on metagenomic next-generation sequencing [J]. World Journal of Emergency Medicine, 2021, 12(1): 29-35. |
[3] | Hai-jiang Zhou, Tian-fei Lan, Shu-bin Guo. Outcome prediction value of National Early Warning Score in septic patients with community-acquired pneumonia in emergency department: A single-center retrospective cohort study [J]. World Journal of Emergency Medicine, 2020, 11(4): 206-215. |
[4] | Yu-ming Wang, Yan-jun Zheng, Ying Chen, Yun-chuan Huang, Wei-wei Chen, Ran Ji, Li-li Xu, Zhi-tao Yang, Hui-qiu Sheng, Hong-ping Qu, En-qiang Mao, Er-zhen Chen. Effects of fluid balance on prognosis of acute respiratory distress syndrome patients secondary to sepsis [J]. World Journal of Emergency Medicine, 2020, 11(4): 216-222. |
[5] | Miao Yuan, Ding-yi Yan, Fang-shi Xu, Yi-di Zhao, Yang Zhou, Long-fei Pan. Effects of sepsis on hippocampal volume and memory function [J]. World Journal of Emergency Medicine, 2020, 11(4): 223-230. |
[6] | Wen-peng Yin, Jia-bao Li, Xiao-fang Zheng, Le An, Huan Shao, Chun-sheng Li. Effect of neutrophil CD64 for diagnosing sepsis in emergency department [J]. World Journal of Emergency Medicine, 2020, 11(2): 79-86. |
[7] | Shao-hua Liu, Huo-yan Liang, Hong-yi Li, Xian-fei Ding, Tong-wen Sun, Jing Wang. Effect of low high-density lipoprotein levels on mortality of septic patients: A systematic review and meta-analysis of cohort studies [J]. World Journal of Emergency Medicine, 2020, 11(2): 109-116. |
[8] | Yi-wen Fan, Shao-wei Jiang, Jia-meng Chen, Hui-qi Wang, Dan Liu, Shu-ming Pan, Cheng-jin Gao. A pulmonary source of infection in patients with sepsis-associated acute kidney injury leads to a worse outcome and poor recovery of kidney function [J]. World Journal of Emergency Medicine, 2020, 11(1): 18-26. |
[9] | Kimberly A. Chambers, Adam Y. Park, Rosa C. Banuelos, Bryan F. Darger, Bindu H. Akkanti, Annamaria Macaluso, Manoj Thangam, Pratik B. Doshi. Outcomes of severe sepsis and septic shock patients after stratification by initial lactate value [J]. World Journal of Emergency Medicine, 2018, 9(2): 113-117. |
[10] | Muhammad Akbar Baig, Hira Shahzad, Erfan Hussain, Asad Mian. Validating a point of care lactate meter in adult patients with sepsis presenting to the emergency department of a tertiary care hospital of a low- to middle-income country [J]. World Journal of Emergency Medicine, 2017, 8(3): 184-189. |
[11] | Chao Cao, Tao Ma, Yan-fen Chai, Song-tao Shou. The role of regulatory T cells in immune dysfunction during sepsis [J]. World Journal of Emergency Medicine, 2015, 6(1): 5-9. |
[12] | Kun Chen, Qiu-xiang Zhou, Hong-wei Shan, Wen-fang Li, Zhao-fen Lin. Prognostic value of CD4+CD25+ Tregs as a valuable biomarker for patients with sepsis in ICU [J]. World Journal of Emergency Medicine, 2015, 6(1): 40-43. |
[13] | Hui Fu, Qiao-sheng Wang, Qiong Luo, Si Tan, Hua Su, Shi-lin Tang, Zheng-liang Zhao, Li-ping Huang. Simvastatin inhibits apoptosis of endothelial cells induced by sepsis through upregulating the expression of Bcl-2 and downregulating Bax [J]. World Journal of Emergency Medicine, 2014, 5(4): 291-297. |
[14] | Qi Zou, Wei Wen, Xin-chao Zhang. Presepsin as a novel sepsis biomarker [J]. World Journal of Emergency Medicine, 2014, 5(1): 16-19. |
[15] | Nishant Raj Pandey, Yu-yao Bian, Song-tao Shou. Significance of blood pressure variability in patients with sepsis [J]. World Journal of Emergency Medicine, 2014, 5(1): 42-47. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||