World Journal of Emergency Medicine ›› 2014, Vol. 5 ›› Issue (4): 291-297.doi: 10.5847/wjem.j.issn.1920-8642.2014.04.009
• Original Articles • Previous Articles Next Articles
Open Access
Hui Fu1, Qiao-sheng Wang1(
), Qiong Luo1, Si Tan2, Hua Su1, Shi-lin Tang1, Zheng-liang Zhao1, Li-ping Huang1
Received:2014-04-10
Accepted:2014-10-06
Online:2014-12-15
Published:2014-12-15
Contact:
Qiao-sheng Wang
E-mail:docwqs@163.com
Hui Fu, Qiao-sheng Wang, Qiong Luo, Si Tan, Hua Su, Shi-lin Tang, Zheng-liang Zhao, Li-ping Huang. Simvastatin inhibits apoptosis of endothelial cells induced by sepsis through upregulating the expression of Bcl-2 and downregulating Bax[J]. World Journal of Emergency Medicine, 2014, 5(4): 291-297.
Add to citation manager EndNote|Ris|BibTeX
URL: http://wjem.com.cn/EN/10.5847/wjem.j.issn.1920-8642.2014.04.009
Figure 1.
The relative growth rate of HUVECs in each group was detected by MTT assay. The relative growth rate of HUVECs in both sepsis and simvastatin groups decreased significantly compared with the control group #P<0.05, *P<0.05). However, the relative growth rate of HUVECs increased in the simvastain group compared with the sepsis group (#P<0.05).
Figure 2.
Apoptosis was detected by staining with Hoechst 33342. The apoptosis of HUVECs showed that intensely condensed chromatin and/or fragmented nuclei in the cells were detected by fluorescence microscopy. The apoptosis increased significantly in the sepsis group (B) compared with the control group (A); however, the apoptosis in the simvastatin group (C) decreased significantly compared with the sepsis group. Scale bars: A-C, 20 μm.
Figure 3.
Apoptosis was detected by flow cytometry.The apoptosis of HUVECs increased significantly in the sepsis and simvastatin groups (B) compared with the control group (A); however, the apoptosis in the simvastatin group decreased significantly compared with the sepsis group (C). The apoptotic rate of HUVECs in both sepsis and simvastatin groups significantly increased compared with the control group (#P<0.05, *P<0.05). However, the apoptotic rate decreased in the simvastain group (#P<0.05) (D) compared with the sepsis group.
Figure 4.
Bcl-2 mRNA and Bax mRNA were detected respectively by RT-PCR in the two groups (A-D). A showed that the changes of density of Bcl-2 mRNA in the control group (band 1), the sepsis group (band 2) and the simvastatin group (band 3), respectively. The bar grah (C) showed that the optical density of Bcl-2 mRNA decreased in the sepsis group compared with the control group (*P<0.05) and the optical density of Bcl-2 Mrna increased in the simvastatin group compared with the sepsis group (#P<0.05). However, B showed that the changes of density of Bax mRNA in the control group (band 1), the sepsis group (band 2) and the simvastatin group (band 3), respectively. The bar grah (D) showed that the optical density of Bcl-2 mRNA increased in the sepsis group compared with the control group (*P<0.05) and that the opical density of Bcl-2 mRNA decreased in the simvastatin group compared with the sepsis group (#P<0.05).
| 1 |
Stearns-Kurosawa DJ, Osuchowski MF, Valentine C, Kurosawa S, Remick DG. The pathogenesis of sepsis. Annu Rev Pathol 2011; 6:19-48.
doi: 10.1146/annurev-pathol-011110-130327 pmid: 20887193 |
| 2 |
Henneke P, Golenbock DT. Innate immune recognition of lipopolysaccharide by endothelial cells. Crit Care Med 2002; 30:S207-S213.
doi: 10.1097/00003246-200205001-00006 pmid: 12004237 |
| 3 |
Zhang FX, Kirschning CJ, Mancinelli R, Xu XP, Jin Y, Faure E, et al. Bacterial lipopolysaccharide activates nuclear factor-kappaB through interleukin-1 signaling mediators in cultured human dermal endothelial cells and mononuclear phagocytes. J Biol Chem 1999; 274:7611-7614.
doi: 10.1074/jbc.274.12.7611 pmid: 10075645 |
| 4 |
Aird WC. The role of the endothelium in severe sepsis and multiple organ dysfunction syndrome. Blood 2003; 101:3765-3777.
doi: 10.1182/blood-2002-06-1887 pmid: 12543869 |
| 5 |
Hotchkiss RS, Tinsley KW, Swanson PE, Karl IE. Endothelial cell apoptosis in sepsis. Crit Care Med 2002; 30:S225-S228.
doi: 10.1097/00003246-200205001-00009 pmid: 12004240 |
| 6 |
Lindner H, Holler E, Ertl B, Multhoff G, Schreglmann M, Klauke I, et al. Peripheral blood mononuclear cells induce programmed cell death in human endothelial cells and may prevent repair: role of cytokines. Blood 1997; 89:1931-1938.
pmid: 9058713 |
| 7 |
Bombeli T, Karsan A, Tait JF, Harlan JM. Apoptotic vascular endothelial cells become procoagulant. Blood 1997; 89:2429-2442.
pmid: 9116287 |
| 8 |
Stefanec T. Endothelial apoptosis: could it have a role in the pathogenesis and treatment of disease? Chest 2000; 117:841-854.
doi: 10.1378/chest.117.3.841 pmid: 10713015 |
| 9 |
Weitz-Schmidt G, Welzenbach K, Brinkmann V, Kamata T, Kallen J, Bruns C, et al. Statins selectively inhibit leukocyte function antigen-1 by binding to a novel regulatory integrin site. Nat Med 2001; 7:687-692.
doi: 10.1038/89058 pmid: 11385505 |
| 10 |
Pruefer D, Makowski J, Dahm M, Guth S, Oelert H, Darius H, et al. Aprotinin inhibits leukocyte-endothelial cell interactions after hemorrhage and reperfusion. Ann Thorac Surg 2003; 75, 210-215, 215-216.
doi: 10.1016/S0003-4975(02)04315-1 |
| 11 | Souza Neto JL, Araújo Filho I, Rego AC, Dominici VA, Azevedo IM, Egito ES, et al. Effects of simvastatin in abdominal sepsis in rats. Acta Cir Bras 2006; 21 Suppl 4: 8-12. |
| 12 |
Boyd AR, Hinojosa CA, Rodriguez PJ, Orihuela CJ. Impact of oral simvastatin therapy on acute lung injury in mice during pneumococcal pneumonia. BMC Microbiol 2012; 12:73.
doi: 10.1186/1471-2180-12-73 pmid: 22587610 |
| 13 |
Kono Y, Inomata M, Hagiwara S, Shiraishi N, Noguchi T, Kitano S. A newly synthetic vitamin E derivative, E-Ant-S-GS, attenuates lung injury caused by cecal ligation and puncture-induced sepsis in rats. Surgery 2012; 151:420-426.
doi: 10.1016/j.surg.2011.08.003 pmid: 22000829 |
| 14 |
Lee JG, Kay EP. Common and distinct pathways for cellular activities in FGF-2 signaling induced by IL-1beta in corneal endothelial cells. Invest Ophthalmol Vis Sci 2009; 50:2067-2076.
doi: 10.1167/iovs.08-3135 pmid: 19136710 |
| 15 |
Raju J, Bird RP. Energy restriction reduces the number of advanced aberrant crypt foci and attenuates the expression of colonic transforming growth factor beta and cyclooxygenase isoforms in Zucker obese (fa/fa) rats. Cancer Res 2003; 63:6595-6601.
pmid: 14583451 |
| 16 |
Darwish I, Liles WC. Emerging therapeutic strategies to prevent infection-related microvascular endothelial activation and dysfunction. Virulence 2013; 4:572-582.
doi: 10.4161/viru.25740 pmid: 23863603 |
| 17 |
Semeraro N, Ammollo CT, Semeraro F, Colucci M. Sepsis, thrombosis and organ dysfunction. Thromb Res 2012; 129:290-295.
doi: 10.1016/j.thromres.2011.10.013 |
| 18 |
Calderari B, Liaudet L. Pathophysiological mechanisms of organ dysfunction in sepsis. Rev Med Suisse 2010; 6:2406-2409.
pmid: 21268420 |
| 19 |
Schouten M, Wiersinga WJ, Levi M, van der Poll T. Inflammation, endothelium, and coagulation in sepsis. J Leukoc Biol 2008; 83:536-545.
doi: 10.1189/jlb.0607373 pmid: 18032692 |
| 20 |
Matsuda N, Yamamoto S, Hatakeyama N, Hattori Y. Vascular endothelial dysfunction in septic shock. Nihon Yakurigaku Zasshi 2008; 131:96-100.
doi: 10.1254/fpj.131.96 pmid: 18277008 |
| 21 |
Boos CJ, Goon PK, Lip GY. The endothelium, inflammation, and coagulation in sepsis. Clin Pharmacol Ther 2006; 79:20-22.
doi: 10.1016/j.clpt.2005.10.004 pmid: 16413238 |
| 22 |
Meziani F, Delabranche X, Asfar P, Toti F. Bench-to-bedside review: circulating microparticles—a new player in sepsis? Crit Care 2010; 14:236.
doi: 10.1186/cc9231 pmid: 21067540 |
| 23 |
Walenta KL, Link A, Friedrich EB, Böhm M. Circulating microparticles in septic shock. Am J Respir Crit Care Med 2009; 180: 100, 100-101.
doi: 10.1164/ajrccm.180.1.100a pmid: 19535667 |
| 24 |
Wu ZH, Ji CL, Li H, Qiu GX, Gao CJ, Weng XS. Membrane microparticles and diseases. Eur Rev Med Pharmacol Sci 2013; 17:2420-2427.
pmid: 24089218 |
| 25 |
Mason JC. The statins—therapeutic diversity in renal disease? Curr Opin Nephrol Hypertens 2005; 14:17-24.
doi: 10.1097/00041552-200501000-00004 pmid: 15586011 |
| 26 |
Epstein M, Campese VM. Pleiotropic effects of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors on renal function. Am J Kidney Dis 2005; 45:2-14.
doi: 10.1053/j.ajkd.2004.08.040 |
| 27 |
Khanal S, Attallah N, Smith DE, Kline-Rogers E, Share D, O'Donnell MJ, et al. Statin therapy reduces contrast-induced nephropathy: an analysis of contemporary percutaneous interventions. Am J Med 2005; 118:843-849.
doi: 10.1016/j.amjmed.2005.03.031 pmid: 16084176 |
| 28 |
Pierre-Paul D, Gahtan V. Noncholesterol-lowering effects of statins. Vasc Endovascular Surg 2003; 37:301-313.
doi: 10.1177/153857440303700501 pmid: 14528375 |
| 29 |
Ridker PM, Cannon CP, Morrow D, Rifai N, Rose LM, McCabe CH, et al. C-reactive protein levels and outcomes after statin therapy. N Engl J Med 2005; 352:20-28.
doi: 10.1056/NEJMoa042378 pmid: 15635109 |
| 30 |
Liappis AP, Kan VL, Rochester CG, Simon GL. The effect of statins on mortality in patients with bacteremia. Clin Infect Dis 2001; 33:1352-1357.
doi: 10.1086/323334 pmid: 11565076 |
| 31 |
Kruger P, Fitzsimmons K, Cook D, Jones M, Nimmo G. Statin therapy is associated with fewer deaths in patients with bacteraemia. Intensive Care Med 2006; 32:75-79.
doi: 10.1007/s00134-005-2859-y pmid: 16283159 |
| 32 |
Almog Y, Shefer A, Novack V, Maimon N, Barski L, Eizinger M, et al. Prior statin therapy is associated with a decreased rate of severe sepsis. Circulation 2004; 110:880-885.
doi: 10.1161/01.CIR.0000138932.17956.F1 pmid: 15289367 |
| 33 |
Merx MW, Liehn EA, Graf J, van de Sandt A, Schaltenbrand M, Schrader J, et al. Statin treatment after onset of sepsis in a murine model improves survival. Circulation 2005; 112:117-124.
doi: 10.1161/CIRCULATIONAHA.104.502195 pmid: 15998696 |
| 34 |
Grommes J, Vijayan S, Drechsler M, Hartwig H, Mörgelin M, Dembinski R, et al. Simvastatin reduces endotoxin-induced acute lung injury by decreasing neutrophil recruitment and radical formation. PLoS One 2012; 7:e38917.
doi: 10.1371/journal.pone.0038917 pmid: 22701728 |
| 35 |
Yasuda H, Yuen PS, Hu X, Zhou H, Star RA. Simvastatin improves sepsis-induced mortality and acute kidney injury via renal vascular effects. Kidney Int 2006; 69:1535-1542.
doi: 10.1038/sj.ki.5000300 pmid: 16557230 |
| 36 |
La Mura V, Pasarín M, Meireles CZ, Miquel R, Rodríguez-Vilarrupla A, Hide D, et al. Effects of simvastatin administration on rodents with lipopolysaccharide-induced liver microvascular dysfunction. Hepatology 2013; 57:1172-1181.
doi: 10.1002/hep.26127 pmid: 23184571 |
| 37 |
Buerke U, Carter JM, Schlitt A, Russ M, Schmidt H, Sibelius U, et al. Apoptosis contributes to septic cardiomyopathy and is improved by simvastatin therapy. Shock 2008; 29:497-503.
doi: 10.1097/shk.0b013e318142c434 pmid: 18598004 |
| 38 |
Pinheiro da Silva F, Nizet V. Cell death during sepsis: integration of disintegration in the inflammatory response to overwhelming infection. Apoptosis 2009; 14:509-521.
doi: 10.1007/s10495-009-0320-3 pmid: 19199035 |
| 39 |
Chittenden T, Harrington EA, O'Connor R, Flemington C, Lutz RJ, Evan GI, et al. Induction of apoptosis by the Bcl-2 homologue Bak. Nature 1995; 374:733-736.
doi: 10.1038/374733a0 pmid: 7715730 |
| 40 |
Schulz JB, Weller M, Moskowitz MA. Caspases as treatment targets in stroke and neurodegenerative diseases. Ann Neurol 1999; 45:421-429.
doi: 10.1002/1531-8249(199904)45:4<421::aid-ana2>3.0.co;2-q pmid: 10211465 |
| 41 |
Du G, Song Y, Zhang T, Ma L, Bian N, Chen X, et al. Simvastatin attenuates TNFalpha induced apoptosis in endothelial progenitor cells via the upregulation of SIRT1. Int J Mol Med 2014; 34:177-182.
doi: 10.3892/ijmm.2014.1740 |
| 42 |
Kim YC, Song SB, Lee SK, Park SM, Kim YS. The Nuclear Orphan Receptor NR4A1 is Involved in the Apoptotic Pathway Induced by LPS and Simvastatin in RAW 264.7 Macrophages. Immune Netw 2014; 14:116-122.
doi: 10.4110/in.2014.14.2.116 pmid: 24851101 |
| [1] | Quan Li, Yun Qu, Jinfang Xue, Hai Kang, Chuanzhu Lyu. Exploring lipid-modifying therapies for sepsis through the modulation of circulating inflammatory cytokines: a Mendelian randomization study [J]. World Journal of Emergency Medicine, 2025, 16(3): 256-261. |
| [2] | Peili Chen, Yan Ge, Huiqiu Sheng, Wenwu Sun, Jiahui Wang, Li Ma, Enqiang Mao. The role of early changes in routine coagulation tests in predicting the occurrence and prognosis of sepsis [J]. World Journal of Emergency Medicine, 2025, 16(2): 136-143. |
| [3] | Chunxue Wang, Dianyin Yang, Yuxin Zhu, Qian Yang, Tong Liu, Xiandong Liu, Dongyang Zhao, Xiaowei Bao, Tiancao Dong, Li Shao, Lunxian Tang. Circulating circular RNAs act as potential novel biomarkers for sepsis secondary to pneumonia: a prospective cohort study [J]. World Journal of Emergency Medicine, 2025, 16(2): 144-152. |
| [4] | Azzah S Alharbi, Raghad Hassan Sanyi, Esam I Azhar. Bacteria and host: what does this mean for sepsis bottleneck? [J]. World Journal of Emergency Medicine, 2025, 16(1): 10-17. |
| [5] | Chao Gong, Shengyong Xu, Youlong Pan, Shigong Guo, Joseph Harold Walline, Xue Wang, Xin Lu, Shiyuan Yu, Mubing Qin, Huadong Zhu, Yanxia Gao, Yi Li. Effects of probiotic treatment on the prognosis of patients with sepsis: a systematic review [J]. World Journal of Emergency Medicine, 2025, 16(1): 18-27. |
| [6] | Jingyuan Xie, Jiandong Gao, Mutian Yang, Ting Zhang, Yecheng Liu, Yutong Chen, Zetong Liu, Qimin Mei, Zhimao Li, Huadong Zhu, Ji Wu. Prediction of sepsis within 24 hours at the triage stage in emergency departments using machine learning [J]. World Journal of Emergency Medicine, 2024, 15(5): 379-385. |
| [7] | Juexian Wei, Hengzong Mo, Yuting Zhang, Wenmin Deng, Siqing Zheng, Haifeng Mao, Yang Ji, Huilin Jiang, Yongcheng Zhu. Evolutionary trend analysis and knowledge structure mapping of endothelial dysfunction in sepsis: a bibliometrics study [J]. World Journal of Emergency Medicine, 2024, 15(5): 386-396. |
| [8] | Rex Pui Kin Lam, Zonglin Dai, Eric Ho Yin Lau, Carrie Yuen Ting Ip, Ho Ching Chan, Lingyun Zhao, Tat Chi Tsang, Matthew Sik Hon Tsui, Timothy Hudson Rainer. Comparing 11 early warning scores and three shock indices in early sepsis prediction in the emergency department [J]. World Journal of Emergency Medicine, 2024, 15(4): 273-282. |
| [9] | Huixin Zhao, Yiming Dong, Sijia Wang, Jiayuan Shen, Zhenju Song, Mingming Xue, Mian Shao. Comparison between sepsis-induced coagulopathy and sepsis-associated coagulopathy criteria in identifying sepsis-associated disseminated intravascular coagulation [J]. World Journal of Emergency Medicine, 2024, 15(3): 190-196. |
| [10] | A-ling Tang, Yan Li, Li-chao Sun, Xiao-yu Liu, Nan Gao, Sheng-tao Yan, Guo-qiang Zhang. Xuebijing improves intestinal microcirculation dysfunction in septic rats by regulating the VEGF-A/PI3K/Akt signaling pathway [J]. World Journal of Emergency Medicine, 2024, 15(3): 206-213. |
| [11] | Qing Zhao, Jinfu Ma, Jianguo Xiao, Zhe Feng, Hui Liu. Data driven analysis reveals prognostic genes and immunological targets in human sepsis-associated acute kidney injury [J]. World Journal of Emergency Medicine, 2024, 15(2): 91-97. |
| [12] | Weichao Ding, Wei Zhang, Juan Chen, Mengmeng Wang, Yi Ren, Jing Feng, Xiaoqin Han, Xiaohang Ji, Shinan Nie, Zhaorui Sun. Protective mechanism of quercetin in alleviating sepsis-related acute respiratory distress syndrome based on network pharmacology and in vitro experiments [J]. World Journal of Emergency Medicine, 2024, 15(2): 111-120. |
| [13] | Wei Zhou, Maiying Fan, Xiang Li, Fang Yu, En Zhou, Xiaotong Han. Molecular mechanism of Xuebijing in treating pyogenic liver abscess complicated with sepsis [J]. World Journal of Emergency Medicine, 2024, 15(1): 35-40. |
| [14] | Jingyi Wang, Li Weng, Jun Xu, Bin Du. Blood gas analysis as a surrogate for microhemodynamic monitoring in sepsis [J]. World Journal of Emergency Medicine, 2023, 14(6): 421-427. |
| [15] | Saifeng Chen, Xuewei Hao, Guo Chen, Guorong Liu, Xiaoyan Yuan, Peiling Shen, Dongfeng Guo. Effects of mesencephalic astrocyte-derived neurotrophic factor on sepsis-associated acute kidney injury [J]. World Journal of Emergency Medicine, 2023, 14(5): 386-392. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
