World Journal of Emergency Medicine ›› 2025, Vol. 16 ›› Issue (4): 348-356.doi: 10.5847/wjem.j.1920-8642.2025.068
• Original Articles • Previous Articles Next Articles
Lingjie Cao1, Yuanyuan Pei1, Xiaolu Ma1, Liping Guo1, Fengtao Yang1, Fange Shi1, Pengfei Wang2, Dilu Li1, Kunyu Yang1, Jihong Zhu1()
Received:
2024-05-09
Accepted:
2024-11-02
Online:
2025-07-18
Published:
2025-07-01
Contact:
Jihong Zhu
E-mail:zhujihong64@sina.com
Lingjie Cao, Yuanyuan Pei, Xiaolu Ma, Liping Guo, Fengtao Yang, Fange Shi, Pengfei Wang, Dilu Li, Kunyu Yang, Jihong Zhu. A risk prediction model for acute kidney injury following acute heart failure in an emergency department cohort in China[J]. World Journal of Emergency Medicine, 2025, 16(4): 348-356.
Add to citation manager EndNote|Ris|BibTeX
URL: http://wjem.com.cn/EN/10.5847/wjem.j.1920-8642.2025.068
Table 1.
Baseline characteristics of the patients with AHF grouped according to AKI incidence in the training set
Variables | Total (n = 552) | AKI group (n =155) | Non-AKI group (n = 397) | Statistics | P-value |
---|---|---|---|---|---|
Male, n (%) | 305 (55.3) | 85 (54.8) | 220 (55.4) | 0.015 | 0.903 |
Age, years (n=551) | 79 (68,85) | 79 (67,85) | 79 (68,85) | -0.041 | 0.967 |
Systolic pressure, mmHg (n=549) | 139 (120,157) | 142 (124,159) | 138 (119.75,155) | -1.508 | 0.132 |
Diastolic pressure, mmHg (n=549) | 79 (68,88) | 80 (70,90) | 78.5 (68,88) | -0.919 | 0.358 |
Heart rate, beats/min (n=550) | 97 (81,115) | 100 (84,120) | 96 (79,114) | -2.096 | 0.036* |
Comorbidities, n (%) | |||||
Hypertension | 425 (77) | 120 (77.4) | 305 (76.8) | 0.022 | 0.882 |
Diabetes mellitus | 246 (44.6) | 97 (62.6) | 149 (37.5) | 28.313 | <0.001 |
Prior MI | 143 (25.9) | 38 (24.7) | 120 (265.7) | 0.033 | 0.855 |
Previous AHF | 158 (28.7) | 38 (24.7) | 120 (30.2) | 1.672 | 0.196 |
CKD | 118 (21.4) | 46 (29.7) | 72 (18.1) | 8.835 | 0.003 |
Cerebral infarction | 120 (21.7) | 42 (27.1) | 78 (19.6) | 3.636 | 0.057 |
COPD | 88 (15.9) | 26 (16.8) | 62 (15.6) | 0.111 | 0.739 |
Previous PCI | 108 (19.6) | 35 (22.6) | 73 (18.4) | 1.245 | 0.264 |
Previous CABG | 46 (8.3) | 10 (6.5) | 36 (9.1) | 0.999 | 0.318 |
DCM | 16 (2.9) | 14 (2.6) | 12 (3.0) | 0.077 | 0.781 |
CPHD | 17 (3.1) | 5 (3.2) | 12 (3.0) | 0.015 | 0.901 |
HCM | 11 (2.0) | 1 (0.6) | 10 (2.5) | 2.044 | 0.157 |
RHD | 23 (4.2) | 6 (3.9) | 27 (4.3) | 0.047 | 0.828 |
Type of AHF, n (%) Left-sided heart failure Right-sided heart failure Total heart failure | 195 (35.3) 36 (6.5) 321 (58.2) | 49 (31.6) 4 (2.6) 102 (65.8) | 146 (37.0) 31 (7.8) 219 (55.2) | 8.145 | 0.017* |
NYHA class (n=435), n (%) II III IV | 79 (18.2) 194 (44.6) 162 (37.2) | 16 (13.3) 51 (42.5) 53 (44.2) | 63 (20.0) 143 (45.4) 109 (34.6) | 0.424 | 0.109 |
Killip class (n = 117), n (%) II III-IV | 72 (61.5) 45 (38.5) | 17 (48.6) 18 (51.4) | 55 (67.1) 27 (32.9) | 7.108 | 0.008* |
Laboratory tests | |||||
CRP, mg/L (n =425) | 14.92 (4.12,52.35) | 26 (6.4,78.8) | 13 (4,45.78) | -2.949 | 0.003* |
WBC, × 109/L | 8.23 (6.19,11.95) | 10.92 (7.3,14.75) | 7.56 (5.99,10.54) | -6.348 | <0.001* |
Hemoglobin, g/L | 111.09±27.443 | 101.40±28.1 | 114.88±26.263 | -5.311 | <0.001* |
ALT, U/L (n=550) | 22 (14,39) | 23 (14,47.75) | 21 (14,36) | -1.339 | 0.181 |
AST, U/L (n=550) | 29 (19,43) | 32.5 (20.75,57) | 28 (18,40) | -2.591 | 0.010* |
Albumin, g/L (n=550) | 34.17±5.63 | 32.16±5.93 | 34.95±5.32 | -5.342 | <0.001* |
Na, mmol/L (n=551) | 140.3 (136.9,143.1) | 141.65 (136.9,145.03) | 140.1 (136.75,142.3) | -3.334 | <0.001* |
K, mmol/L (n=551) | 4.3 (3.9,4.8) | 4.6 (4.1,5.2) | 4.3 (3.9,4.7) | -4.871 | <0.001* |
BUN, mmol/L | 8.7 (6.34,12.48) | 11.52 (7.62,15.3) | 8 (5.9,11.22) | -6.666 | <0.001* |
Cr, μmol/L | 96 (74,131.75) | 120 (89,164) | 89 (72,115.5) | -6.513 | <0.001* |
eGFR, ml/min per 1.73 m2 | 57.92 (39.56,79.68) | 44.61 (30.67,62.95) | 64.37 (44.16,82.81) | -6.657 | <0.001* |
First of BNP, pg/mL, (n=396) | 794.5 (451,1590) | 949 (479.25,1954.25) | 725.5 (410.25,1452.25) | -2.481 | 0.013* |
Maximum of BNP, pg/mL, (n=351) | 1070 (571,1920) | 1405 (806.25,2349) | 894 (506,1965) | -4.659 | <0.001* |
First of NT-proBNP, pg/mL (n=191) | 4610 (2238,10200) | 9032.5 (4378.5,21574.75) | 3950 (2020,7815) | -3.920 | <0.001* |
Maximum of NT-proBNP, pg/mL (n=163) | 5800 (2730,11421) | 11610.5 (5877.5,25983.75) | 4490 (2309,8895) | -4.549 | <0.001* |
cTnI, ng/mL (n=318) | 0.0325 (0,2) | 1 (0,3) | 0 (0,2) | -3.168 | 0.010* |
hs-TnI, pg/mL (n=77) | 40 (12.5,202) | 135 (32.75,780.75) | 29 (7,98) | -3.026 | <0.001* |
CK-MB, ng/mL (n=460) | 3.5 (2.0,7.4) | 4.7 (2.6,13.2 | 3.0 (2.0,6.0) | -4.039 | <0.001* |
LVEF (n=499) <40% 40%-49% ≥50% | 109 (21.8) 121 (24.2) 269 (53.9) | 38 (27.7) 31 (22.6) 68 (49.6) | 71 (19.6) 90 (25.0) 201 (55.5) | 3.919 | 0.141 |
Lactic acid, mmol/L (n=313) | 1.60 (1.00,2.90) | 1.70 (1.15,3.75) | 1.50 (1.00,2.70) | -3.755 | 0.099 |
Contrast volume, mL (n=41) | 300 (150,400) | 350 (225,475) | 210 (135,400) | -1.125 | 0.261 |
Treatment, n (%) | |||||
Initial dose of furosemide at 24 h, mg/d (n=729) | 20 (20,40) | 20 (20,40) | 20 (20,40) | -1.291 | 0.197 |
Maximum dose of furosemide at 24 h, mg/d | 40 (20,80) | 60 (20,100) | 40 (20,60) | -5.857 | <0.001* |
Rh-BNP | 118 (21.4) | 42 (27.1) | 76 (19.1) | 4.195 | 0.041* |
Levosimendan | 123 (22.3) | 37 (23.9) | 86 (21.7) | 0.314 | 0.575 |
Digitalis | 213 (38.6) | 67 (43.2) | 146 (36.8) | 1.957 | 0.162 |
Nitrates | 370 (67) | 111 (71.6) | 259 (65.2) | 2.049 | 0.152 |
ACEI/ARB/ARNI | 221 (40.0) | 52 (33.5) | 169 (42.6) | 3.779 | 0.052 |
SGLT2i | 48 (8.7) | 14 (9.0) | 34 (8.6) | 0.031 | 0.861 |
β-blockers | 325 (58.9) | 94 (60.6) | 231 (58.2) | 0.278 | 0.598 |
Spironolactone | 172 (31.2) | 46 (29.7) | 126 (31.7) | 0.221 | 0.639 |
Iron supplements | 58 (10.5) | 24 (15.5) | 34 (8.6) | 5.676 | 0.017* |
Dopamine | 43 (7.8) | 18 (11.6) | 25 (6.3) | 4.385 | 0.036* |
Norepinephrine | 36 (6.5) | 20 (12.9) | 16 (4.0) | 14.396 | <0.001* |
Metaraminol | 30 (5.4) | 16 (10.3) | 14 (3.5) | 10.018 | 0.002* |
IABP | 5 (0.9) | 1 (0.6) | 4 (1.0) | 0.163 | 0.686 |
CRRT | 12 (2.2) | 6 (3.9) | 6 (1.5) | 2.919 | 0.088 |
Non-invasive ventilation | 130 (23.6) | 60 (38.7) | 70 (17.6) | 27.507 | <0.001* |
Variables | Total (n = 552) | AKI group (n =155) | Non-AKI group (n = 397) | Statistics | P-value |
Invasive ventilation | 32 (5.8) | 15 (9.7) | 17 (4.3) | 5.942 | 0.015* |
CPR | 31 (5.6) | 9 (5.8) | 22 (5.5) | 0.015 | 0.903 |
PCI | 53 (9.6) | 9 (5.8) | 44 (11.1) | 3.576 | 0.059 |
Table 2.
Assignment of values to the continuous variables
Variables | Assigned values |
---|---|
Heart rate, beats/min | <97=0, ≥97=1 |
CRP, mg/L | <15=0, ≥15=1 |
WBC, × 109/L | <8.2=0, ≥8.2=1 |
Hemoglobin, g/L | ≥110=0, <110=1 |
AST, U/L | <29=0, ≥29=1 |
Albumin, g/L | >30=0, ≤30=1 |
Na, mmol/L | <140=0, ≥140=1 |
K, mmol/L | <4.3=0, ≥4.3=1 |
BUN, mmol/L | <8.7=0, ≥8.7=1 |
sCr, μmol/L Maximum dose of furosemide at 24 h, mg/d | <96=0, ≥96=1 <40=0, ≥40=1 |
Table 3.
Logistic regression model for predicting AKI incidenceAKI: acute kidney injury; WBC: white blood cell; sCr: serum creatinine.
Variables | Univariate analysis | Multivariate analysis | |||
---|---|---|---|---|---|
OR (95% CI) | P-value | OR (95% CI) | P-value | ||
WBC, × 109/L | 3.165 (2.129, 4.704) | <0.001 | 2.368 (1.502, 3.733) | <0.001 | |
Albumin, g/L | 3.108 (2.054, 4.704) | <0.001 | 2.669 (1.601, 4.451) | <0.001 | |
sCr, μmol/L | 3.338 (2.229, 4.998) | <0.001 | 3.221 (1.935, 5.363) | <0.001 | |
Hemoglobin, g/L | 2.790 (1.898, 4.099) | <0.001 | 2.009 (1.259, 3.205) | 0.003 | |
Maximum dose of furosemide at 24 h, mg/d | 2.255 (1.503, 3.382) | <0.001 | 2.196 (1.346, 3.582) | 0.002 | |
Non-invasive ventilation | 2.950 (1.951, 4.462) | <0.001 | 2.419 (1.454, 4.024) | 0.001 | |
Diabetes mellitus | 2.784 (1.897, 4.085) | <0.001 | 3.192 (2.014, 5.059) | <0.001 |
Table 4.
The predicting score model of AKI incidence in AHF
Variables | Classification | Points |
---|---|---|
WBC, × 109/L | <8.2 ≥8.2 | 0 2 |
Hemoglobin, g/L | ≥110 <110 | 0 2 |
Albumin, g/L | >30 ≤30 | 0 3 |
sCr, μmol/L | <96 ≥96 | 0 3 |
Maximum dose of furosemide at 24 h, mg/d | <40 ≥40 | 0 2 |
Non-invasive ventilation | No Yes | 0 2 |
Diabetes mellitus | No Yes | 0 3 |
1 | Savarese G, Becher PM, Lund LH, Seferovic P, Rosano GMC, Coats AJS. Global burden of heart failure: a comprehensive and updated review of epidemiology. Cardiovasc Res. 2023; 118(17): 3272-87. |
2 | Wang H, Chai K, Du MH, Wang SF, Cai JP, Li YY, et al. Prevalence and incidence of heart failure among urban patients in China: a national population-based analysis. Circ Heart Fail. 2021; 14(10): e008406. |
3 |
Holgado JL, Lopez C, Fernandez A, Sauri I, Uso R, Trillo JL, et al. Acute kidney injury in heart failure: a population study. ESC Heart Fail. 2020; 7(2): 415-22.
doi: 10.1002/ehf2.12595 pmid: 32059081 |
4 | Ru SC, Lv SB, Li ZJ. Incidence, mortality, and predictors of acute kidney injury in patients with heart failure: a systematic review. ESC Heart Fail. 2023; 10(6): 3237-49. |
5 |
Doshi R, Dhawan T, Rendon C, Rodriguez MA, Al-Khafaji JF, Taha M, et al. Incidence and implications of acute kidney injury in patients hospitalized with acute decompensated heart failure. Intern Emerg Med. 2020; 15(3): 421-8.
doi: 10.1007/s11739-019-02188-z pmid: 31686359 |
6 |
Schefold JC, Filippatos G, Hasenfuss G, Anker SD, von Haehling S. Heart failure and kidney dysfunction: epidemiology, mechanisms and management. Nat Rev Nephrol. 2016; 12(10): 610-23.
doi: 10.1038/nrneph.2016.113 pmid: 27573728 |
7 | Ronco C, Di Lullo L. Cardiorenal syndrome in western countries: epidemiology, diagnosis and management approaches. Kidney Dis (Basel). 2017; 2(4): 151-63. |
8 |
Shirakabe A, Hata N, Kobayashi N, Okazaki H, Matsushita M, Shibata Y, et al. Worsening renal function definition is insufficient for evaluating acute renal failure in acute heart failure. ESC Heart Fail. 2018; 5(3): 322-31.
doi: 10.1002/ehf2.12264 pmid: 29388735 |
9 | McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) With the special contribution of the Heart Failure Association (HFA) of the ESC. Rev Esp Cardiol (Engl Ed). 2022; 75(6): 523. |
10 | Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract. 2012; 120(4): c179-c184. |
11 | White PD, Myers MM. The classification of cardiac diagnosis. JAMA. 1921; 77:1414-5. |
12 |
Torabi A, Cleland JGF, Khan NK, Loh PH, Clark AL, Alamgir F, et al. The timing of development and subsequent clinical course of heart failure after a myocardial infarction. Eur Heart J. 2008; 29(7): 859-70.
doi: 10.1093/eurheartj/ehn096 pmid: 18353754 |
13 |
Michael Felker G, Ellison DH, Mullens W, Cox ZL, Testani JM. Diuretic therapy for patients with heart failure: JACC state-of-the-art review. J Am Coll Cardiol. 2020; 75(10): 1178-95.
doi: S0735-1097(20)30194-7 pmid: 32164892 |
14 | Ye JH, Liu CY, Deng ZY, Zhu YF, Zhang SH. Risk factors associated with contrast-associated acute kidney injury in ST-segment elevation myocardial infarction patients: a systematic review and meta-analysis. BMJ Open. 2023; 13(6): e070561. |
15 | Du Y, Wang XZ, Wu WD, Shi HP, Yang XJ, Wu WJ, et al. Predicting the risk of acute kidney injury in patients after percutaneous coronary intervention (PCI) or cardiopulmonary bypass (CPB) surgery: development and assessment of a nomogram prediction model. Med Sci Monit. 2021; 27: e929791. |
16 | Tung YC, Chang CH, Chen YC, Chu PH. Combined biomarker analysis for risk of acute kidney injury in patients with ST-segment elevation myocardial infarction. PLoS One. 2015; 10(4): e0125282. |
17 |
Ricci Z, Romagnoli S, Ronco C. Cardiorenal syndrome. Crit Care Clin. 2021; 37(2): 335-47.
doi: 10.1016/j.ccc.2020.11.003 pmid: 33752859 |
18 | McCullough PA. Anemia of cardiorenal syndrome. Kidney Int Suppl (2011). 2021; 11(1):35-45. |
19 |
Katholi R, Woods W, Taylor G, Deitrick C, Womack K, Katholi C, et al. Oxygen free radicals and contrast nephropathy. Am J Kidney Dis. 1998; 32(1): 64-71.
doi: 10.1053/ajkd.1998.v32.pm9669426 pmid: 9669426 |
20 |
Agmon Y, Peleg H, Greenfeld Z, Rosen S, Brezis M. Nitric oxide and prostanoids protect the renal outer medulla from radiocontrast toxicity in the rat. J Clin Invest. 1994; 94(3): 1069-75.
pmid: 8083347 |
21 | Hizóh I, Sträter J, Schick CS, Kübler W, Haller C. Radiocontrast-induced DNA fragmentation of renal tubular cells in vitro: role of hypertonicity. Nephrol Dial Transplant. 1998; 13(4): 911-8. |
22 | An MM, Liu CX, Gong P. Effects of continuous renal replacement therapy on inflammation-related anemia, iron metabolism and prognosis in sepsis patients with acute kidney injury. World J Emerg Med. 2023; 14(3): 186-92. |
23 | McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, et al. 2023 Update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2023; 44(37): 3627-39. |
24 |
Wiedermann CJ, Wiedermann W, Joannidis M. Hypoalbuminemia and acute kidney injury: a meta-analysis of observational clinical studies. Intensive Care Med. 2010; 36(10): 1657-65.
doi: 10.1007/s00134-010-1928-z pmid: 20517593 |
25 |
Johnson RJ. Have we ignored the role of oncotic pressure in the pathogenesis of glomerulosclerosis? Am J Kidney Dis. 1997; 29(1): 147-52.
pmid: 9002544 |
26 | Wiedermann CJ, Wiedermann W, Joannidis M. Causal relationship between hypoalbuminemia and acute kidney injury. World J Nephrol. 2017; 6(4): 176-87. |
27 | Pannu N. Bidirectional relationships between acute kidney injury and chronic kidney disease. Curr Opin Nephrol Hypertens. 2013; 22(3): 351-6. |
28 |
Kaballo MA, Elsayed ME, Stack AG. Linking acute kidney injury to chronic kidney disease: the missing links. J Nephrol. 2017; 30(4): 461-75.
doi: 10.1007/s40620-016-0359-5 pmid: 27928735 |
29 | Chawla LS, Eggers PW, Star RA, Kimmel PL. Acute kidney injury and chronic kidney disease as interconnected syndromes. N Engl J Med. 2014; 371(1): 58-66. |
30 |
Mebazaa A, Tolppanen H, Mueller C, Lassus J, DiSomma S, Baksyte G, et al. Acute heart failure and cardiogenic shock: a multidisciplinary practical guidance. Intensive Care Med. 2016; 42(2): 147-63.
doi: 10.1007/s00134-015-4041-5 pmid: 26370690 |
31 |
Kuiper JW, Groeneveld AB, Slutsky AS, Plötz FB. Mechanical ventilation and acute renal failure. Crit Care Med. 2005; 33(6): 1408-15.
doi: 10.1097/01.ccm.0000165808.30416.ef pmid: 15942363 |
32 | Hepokoski ML, Malhotra A, Singh P, Crotty Alexander LE. Ventilator-induced kidney injury: are novel biomarkers the key to prevention? Nephron. 2018; 140(2): 90-3. |
33 | Mahesh B, Yim B, Robson D, Pillai R, Ratnatunga C, Pigott D. Does furosemide prevent renal dysfunction in high-risk cardiac surgical patients? Results of a double-blinded prospective randomised trial. Eur J Cardiothorac Surg. 2008; 33(3): 370-6. |
34 | Wang YN, Cheng H, Yue T, Chen YP. Derivation and validation of a prediction score for acute kidney injury in patients hospitalized with acute heart failure in a Chinese cohort. Nephrology. 2013; 18(7): 489-96. |
35 | Zhou LZ, Yang XB, Guan Y, Xu X, Tan MT, Hou FF, et al. Development and validation of a risk score for prediction of acute kidney injury in patients with acute decompensated heart failure: a prospective cohort study in China. J Am Heart Assoc. 2016; 5(11): e004035. |
[1] | Qing Tang, Hongxin Wang, Hao Wang, Jiaqi Xu, Xin Luo, Shuxin Hua, Lijun Wang, Yanfen Chai. Risk factors for death in patients with acute diquat poisoning [J]. World Journal of Emergency Medicine, 2025, 16(3): 225-230. |
[2] | Yi Zhu, Lina Mao, Zhongman Zhang, Sae Rom Lee, Tianshi Li, Hao Zhou, Yanbin Dong, Di An, Wei Li, Xufeng Chen. A predictive model for intracranial hemorrhage in adult patients receiving extracorporeal membrane oxygenation [J]. World Journal of Emergency Medicine, 2025, 16(2): 153-160. |
[3] | Qingliu Zheng, Changyun Liu, Lingying Le, Qiqi Wu, Zhihong Xu, Jiyan Lin, Qiuyun Chen. ICU-acquired weakness in critically ill patients at risk of malnutrition: risk factors, biomarkers, and early enteral nutrition impact [J]. World Journal of Emergency Medicine, 2025, 16(1): 51-56. |
[4] | Fengxia Du, Jun Zha, Yan Li, Lichao Fang, Shuyu Xia, Youjia Yu. Risk factors for postpartum posttraumatic stress disorder after emergency admission [J]. World Journal of Emergency Medicine, 2024, 15(2): 121-125. |
[5] | Qing Zhao, Jinfu Ma, Jianguo Xiao, Zhe Feng, Hui Liu. Data driven analysis reveals prognostic genes and immunological targets in human sepsis-associated acute kidney injury [J]. World Journal of Emergency Medicine, 2024, 15(2): 91-97. |
[6] | Saifeng Chen, Xuewei Hao, Guo Chen, Guorong Liu, Xiaoyan Yuan, Peiling Shen, Dongfeng Guo. Effects of mesencephalic astrocyte-derived neurotrophic factor on sepsis-associated acute kidney injury [J]. World Journal of Emergency Medicine, 2023, 14(5): 386-392. |
[7] | Xinlei Wang, Yao Sun, Xiaoyu Ni, Shu Zhang. Development and validation of an emergency bloodstream infection score for predicting in-hospital mortality in patients with community-acquired bloodstream infections [J]. World Journal of Emergency Medicine, 2023, 14(4): 280-286. |
[8] | Cong-ying Song, Jian-yong Zhu, Wei Huang, Yuan-qiang Lu. Development and validation of a predictive model for the assessment of potassium-lowering treatment among hyperkalemia patients [J]. World Journal of Emergency Medicine, 2023, 14(3): 198-203. |
[9] | Meng-meng An, Chen-xi Liu, Ping Gong. Effects of continuous renal replacement therapy on inflammation-related anemia, iron metabolism and prognosis in sepsis patients with acute kidney injury [J]. World Journal of Emergency Medicine, 2023, 14(3): 186-192. |
[10] | Xiao-guang Zhu, Jia-mei Jiang, Yong-xia Li, Jing Gao, Wei Wu, Qi-ming Feng. Development and validation of a nomogram for predicting survival in patients with acute pancreatitis [J]. World Journal of Emergency Medicine, 2023, 14(1): 44-48. |
[11] | Jia-ying Tang, Xiu-qin Feng, Xiao-xia Huang, Yu-ping Zhang, Zhi-ting Guo, Lan Chen, Hao-tian Chen, Xiao-xiao Ying. Development and validation of a predictive model for patients with post-extubation dysphagia [J]. World Journal of Emergency Medicine, 2023, 14(1): 49-55. |
[12] | Cheng Hang, Li-jun Liu, Zhao-yun Huang, Jian-liang Zhu, Bao-chun Zhou, Xiao-zhen Li. Optimal indicator for changing the filter during the continuous renal replacement therapy in intensive care unit patients with acute kidney injury: A crossover randomized trial [J]. World Journal of Emergency Medicine, 2022, 13(3): 196-201. |
[13] | Hong-yan Wei, Wen-jie Liang, Bin Li, Ling-yu Wei, An-qi Jiang, Wei-dong Chen, Peng-hao Guo, Jia Xu. Clinical characteristics and risk factors of Talaromyces marneffei infection in human immunodeficiency virus-negative patients: A retrospective observational study [J]. World Journal of Emergency Medicine, 2021, 12(4): 281-286. |
[14] | Gui-long Feng, Miao-miao Zheng, Shi-hong Yao, Yin-qi Li, Shao-jun Zhang, Wei-jing Wen, Kai Fan, Jia-li Zhang, Xiao Zhang. Risk factors and predictive model of adrenocortical insufficiency in patients with traumatic brain injury [J]. World Journal of Emergency Medicine, 2021, 12(3): 179-184. |
[15] | Yi-wen Fan, Shao-wei Jiang, Jia-meng Chen, Hui-qi Wang, Dan Liu, Shu-ming Pan, Cheng-jin Gao. A pulmonary source of infection in patients with sepsis-associated acute kidney injury leads to a worse outcome and poor recovery of kidney function [J]. World Journal of Emergency Medicine, 2020, 11(1): 18-26. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||